Advertisements
Advertisements
प्रश्न
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
उत्तर
f(x) = `(x^2 - 4)/(x-2)`, also given that f(2) = 0
`"L"[f(x)]_(x=2) = lim_(x->2^-) f(x)`
[∵ x = 2 – h, where h → 0, x → 2]
`= lim_(h->0)` f(2 - "h") ..[∵ x = 2]
`= lim_(h->0) ((2 - "h")^2 - 4)/((2-"h") - 2)`
`= lim_(h->0) (4 + "h"^2 - 4"h" - 4)/(2 - "h" - 2)`
`= lim_(h->0) ("h"^2 - 4"h")/(-"h")`
`= lim_(h->0) ("h"("h - 4"))/(- "h")`
`= lim_(h->0)` h - 4
`= lim_(h->0) (0 - 4)/(-1)` = 4
But `"L"[f(x)]_(x=2)` f(2) = 0
∴ `"L"[f(x)]_(x=2) ne` f(2)
∴ The given function is not continuous at x = 2.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
log(x + 1)
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
`lim_(theta->0) (tan theta)/theta` =
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
`"d"/"dx" ("a"^x)` =