Advertisements
Advertisements
प्रश्न
Find the derivative of the following function from the first principle.
x2
उत्तर
Let f(x) = x2 then f(x + h) = (x + h)2
Now `"d"/"dx"`f(x)
`= lim_(h->0) ("f"(x + "h") - "f"(x))/"h"`
`= lim_(h->0) ((x + "h")^2 - x^2)/"h"`
`= lim_(h->0) (x^2 + "h"^2 + 2"h"x - x^2)/"h"`
`= lim_(h->0) ("h"^2 + 2"h"x)/"h"`
`= lim_(h->0) ("h"("h" + 2x))/"h"`
`= lim_(h->0)` h + 2x
= 0 + 2x = 2x
Thus `"d"/"dx" (x^2)` = 2x
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
`lim_(theta->0) (tan theta)/theta` =
For what value of x, f(x) = `(x+2)/(x-1)` is not continuous?
If y = x and z = `1/x` then `"dy"/"dx"` =
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is:
If y = log x then y2 =