Advertisements
Advertisements
Question
Find the derivative of the following function from the first principle.
x2
Solution
Let f(x) = x2 then f(x + h) = (x + h)2
Now `"d"/"dx"`f(x)
`= lim_(h->0) ("f"(x + "h") - "f"(x))/"h"`
`= lim_(h->0) ((x + "h")^2 - x^2)/"h"`
`= lim_(h->0) (x^2 + "h"^2 + 2"h"x - x^2)/"h"`
`= lim_(h->0) ("h"^2 + 2"h"x)/"h"`
`= lim_(h->0) ("h"("h" + 2x))/"h"`
`= lim_(h->0)` h + 2x
= 0 + 2x = 2x
Thus `"d"/"dx" (x^2)` = 2x
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Verify the continuity and differentiability of f(x) = `{(1 - x if x < 1),((1 - x)(2 - x) if 1 <= x <= 2),(3 - x if x > 2):}` at x = 1 and x = 2.
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
`"d"/"dx"` (5ex – 2 log x) is equal to:
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is: