Advertisements
Advertisements
प्रश्न
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
उत्तर
`lim_(x->∞) (sum "n")/"n"^2`
= `lim_(x->∞) (("n"("n"+1))/2)/"n"^2`
= `lim_(x->∞) ("n"^2(1 + 1/"n"))/(2"n"^2)`
= `lim_(x->∞) 1/2(1 + 1/"n")`
= `1/2 (1+1/∞)`
`= 1/2`(1 + 0)
`= 1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Show that f(x) = |x| is continuous at x = 0.
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
log(x + 1)
Show that the function f(x) = 2x - |x| is continuous at x = 0
For what value of x, f(x) = `(x+2)/(x-1)` is not continuous?
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to: