Advertisements
Advertisements
प्रश्न
Show that f(x) = |x| is continuous at x = 0.
उत्तर
Given that f(x) = |x| = `{(x if x >= 2),(- x if x < 0):}`
`"L"["f"(x)]_(x=0) = lim_(x->0^-)`f(x)
[∵ x = 0 – h]
`= lim_(h->0^-) "f"(0 - "h")`
`= lim_(h->0^-) "f"(- "h")`
`= lim_(h->0^-) |- "h"|`
`= lim_(h->0^-) |"h"|`
`= lim_(h->0^-) "h" = 0`
`"R"["f"(x)]_(x=0^+) = lim_(x->0^+)`f(x)
`= lim_(h->0^+) "f"(0 - "h")`
`= lim_(h->0^+) "f"("h")`
`= lim_(h->0^+) |"h"|`
`= lim_(h->0) "h"`
= 0
[∵ |x| = x if x > 0]
Also f(0) = |0| = 0
`lim_(x->0^-) "f"(x) = lim_(x->0^+ "f"(x))` = f(0)
∴ f(x) is continuous at x = 0.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Show that the function f(x) = 2x - |x| is continuous at x = 0
`lim_(theta->0) (tan theta)/theta` =
`"d"/"dx" (1/x)` is equal to:
`"d"/"dx"` (5ex – 2 log x) is equal to:
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is:
If y = log x then y2 =