Advertisements
Advertisements
प्रश्न
दो गोलों के आयतनों का अनुपात 64 : 27 है। उनके पृष्ठीय क्षेत्रफलों का अनुपात ______ है।
विकल्प
3 : 4
4 : 3
9 : 16
16 : 9
उत्तर
दो गोलों के आयतनों का अनुपात 64 : 27 है। उनके पृष्ठीय क्षेत्रफलों का अनुपात 16 : 9 है।
स्पष्टीकरण:
माना दोनों गोलों की त्रिज्याएँ क्रमशः r1 और r2, हैं।
∴ त्रिज्या के गोले का आयतन,
r1 = V1 = `43 pi"r"_1^3` ...(i) [∵ गोले का आयतन = `4/3pi` (त्रिज्या)3]
और त्रिज्या के गोले का आयतन,
r2 = V2 = `4/3 pi"r"_2^3` ...(ii)
दिया गया है, आयतन का अनुपात = V1 : V2 = 64 : 27
⇒ `(4/3 pi"r"_1^3)/(4/3 pi"r"_2^3) = 64/27` ...[समीकरण (i) और (ii) का उपयोग करके]
⇒ `("r"_1^3)/("r"_2^3) = 64/27`
⇒ `"r"_1/"r"_2 = 4/3` ...(iii)
अब, पृष्ठीय क्षेत्रफल का अनुपात = `(4 pi"r"_1^2)/(4 pi"r"_2^2)` ...[∵ गोले का पृष्ठीय क्षेत्रफल = 4π (त्रिज्या)2]
= `"r"_1^2/"r"_2^2`
= `("r"_1/"r"_2)^2`
= `(4/3)^2` ...[समीकरण (iii) का उपयोग करके]
= 16 : 9
अतः, उनके पृष्ठीय क्षेत्रफल का आवश्यक अनुपात 16 : 9 है।
APPEARS IN
संबंधित प्रश्न
दवा का एक कैप्सूल एक बेलन के आकार का है जिसके दोनों सिरों पर एक - एक अर्धगोला लगा हुआ है। पूरे कैप्सूल की लंबाई 14 मिमी है और उसका व्यास 5 मिमी है। इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए। [उपयोग `pi = 22/7`]
कोई तंबू एक बेलन के आकार का है जिस पर एक शंकु अध्यारोपित है। यदि बेलनाकार भाग की ऊँचाई और व्यास क्रमश: 2.1 मी और 4 मी है तथा शंकु की तिर्यक ऊँचाई 2.8 मी है तो इस तंबू को बनाने में प्रयुक्त कैनवस का क्षेत्रफल ज्ञात कीजिए। साथ ही, 500 रु प्रति वर्ग मी2 की दर से इसमें प्रयुक्त कैनवस की लागत ज्ञात कीजिए। (ध्यान दें कि तम्बू का आधार कैनवास से ढका नहीं होगा।)
[उपयोग π = `22/7`]
ऊँचाई 2.4 सेमी और व्यास 1.4 सेमी वाले एक ठोस बेलन में से इसी ऊँचाई और इसी व्यास वाला एक शंक्वाकार खोल काट लिया जाता है। शेष बचे ठोस का निकटम वर्ग सेंटीमीटर तक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
[उपयोग π = `22/7`]
लकड़ी के एक ठोस बेलन के प्रत्येक सिरे पर एक अर्धगोला खोदकर निकालते हुए, एक वस्तु बनाई गई है, जैसा की आकृति में दिखाया गया है। यदि बेलन की ऊँचाई 10 सेमी है और आधार की त्रिज्या 3.5 सेमी है तो इस वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए। [उपयोग π = `22/7`]
एक साहुल निम्नलिखित का संयोजन है:
तिर्यक ऊँचाई 45 cm वाली एक बाल्टी के ऊपरी और निचले सिरों की त्रिज्याएँ क्रमशः 28 cm और 7 cm हैं। इस बाल्टी का वक्र पृष्ठीय क्षेत्रफल ______ है।
समान आधार त्रिज्या r वाले दो सर्वसम ठोस अर्धगोलों को उनके आधारों के अनुदिश जोड़ दिया गया है। इस संयोजन का कुल पृष्ठीय क्षेत्रफल 6πr2 है।
एक बेलनाकार बर्तन, जिसकी तली में अर्धगोलाकार भाग आकृति में दर्शाए अनुसार ऊपर की ओर उठा हुआ है, की धारिता `(πr^2)/3[3h - 2r]` है।
दो सर्वसम घनों, जिनमें से प्रत्येक का आयतन 64cm3 है, को सिरे से सिरा मिला कर जोड़ा जाता है। इस प्रकार प्राप्त घनाभ का पृष्ठीय क्षेत्रफल क्या है?
समान आधार त्रिज्या 8 cm और समान ऊँचाई 15 cm वाले दो शंकुओं को उनके आधारों के अनुदिश जोड़ा जाता है। इस प्रकार बने आकार का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।