Advertisements
Advertisements
प्रश्न
दो सदिश `hat"j" + hat"k"` और `3hat"i" -hat"j" + 4hat"k"` किसी ∆ABC की क्रमश: दो भुजाओं AB और AC को निरूपित करते हैं। बिंदु A से हो कर जाने वाली मध्यिका (मीडियन) की लंबाई है
विकल्प
`sqrt34/2`
`sqrt48/2`
`sqrt18`
इनमें से कोई नहीं
उत्तर
सही उत्तर `underline(sqrt34/2)` है।
व्याख्या:
मध्यिका `vec"AD"` को निम्नलिखित प्रकार से व्यक्त कर सकते हैं।
`|vec"AD"| = 1/2 |3hat"i" + 5 hat"k"|`
= `sqrt34/2`
APPEARS IN
संबंधित प्रश्न
P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में बाहयत: विभाजित करता है।
यदि `vec"a" = 2hat"i" - hat"j" + hat"k", vec"b" = hat"i" + hat"j" - 2hat"k"` और `vec"c" = hat"i" + 3hat"j" - hat"k"`, का वह मान ज्ञात कीजिए जिससे `vec"a"` सदिश `lambdavec"b" + vec"c"` पर लंब हो।
परिमाण 10`sqrt3` वाले उन सभी सदिशों को ज्ञात कीजिए जो `hat"i" + 2hat"j" + hat"k"` और `-hat"i" + 3hat"j" + 4hat"k"` को अंतर्विष्ट करने वाले तल पर लंब हो।
सिद्ध कीजिए कि किसी ∆ABC, में `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, जहाँ a, b, c क्रमश: A, B, C शीर्षों की सम्मुख भुजाओं के परिमाण को निरूपित करते हैं।
सदिश `6vec"i" + 2vec"j" + 3vec"k"` का परिमाण है
समांतर चतुर्भुज, का क्षेत्रफल जिसकी संलग्न भुजाएँ `hat"i" + hat"k"` और `2hat"i" + hat"j"+ hat"k"` है
यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3) vec"a" - vec"b"` के मात्रक सदिश होने के लिए `vec"a"` और `vec"b"` के बीच क्या कोण होगा?
यदि `vec"a" = hat"i" + hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `6vec"b"`
यदि `vec"a" = hat"i" + hat"j" + 2hat"k"` और `hat"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `2vec"a" - vec"b"`
`vec"PQ"` की दिशा में मात्रक संदिश ज्ञात कीजिए जहाँ P और Q के निर्देशांक क्रमश: (5, 0, 8) और (3, 3, 2) हैं।
एक सदिश `vec"r"` तीनों अक्षों से समान कोण पर झुका हुआ है। यदि `vec"r"` का परिमाण `2sqrt3` इकाई है तो `vec"r"` ज्ञात कीजिए।
एक सदिश `vec"r"` का परिमाण 14 है तथा दिक्-अनुपात 2, 3, - 6 हैं। `vec"r"` के दिक्-कोसाइन और'घटक ज्ञात कीजिए जब कि यह दिया है कि x-अक्ष से `vec"r"` न्यून कोण बनता है।
सदिशों `2hat"i" - hat"j" + hat"k"` और `3hat"i" + 4hat"j" - hat"k"` के बीच का कोण ज्ञात कीजिए।
यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।
यदि `vec"a", vec"b", vec"c"` किसी त्रिभुज के शीर्षों को निर्धारित करते हैं तो, सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल `1/2[vec"b" xx vec"c" + vec"c" xx vec"a" + vec"a" xx vec"b"]` है। इसके प्रयोग से तीन बिंदुओं `vec"a", vec"b", vec"c"` के संरेखी होने के प्रतिबंध का निगमन कीजिए। साथ ही त्रिभुज के तल पर अभिलंब मात्रक सदिश भी ज्ञात कीजिए।
बिंदु `2vec"a" - 3vec"b"` और `vec"a" + vec"b"` को मिलाने वाले रेखाखंड को 3:1 में विभाजित करने वाले बिंदु का स्थिति सदिश है
यदि सदिश `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` और `vec"b" = hat"i" + 2hat"j" + 3hat"k"` लॉंबिक (orthogonal) हों तो λ का मान है
यदि सदिश `3hat"i" - 6hat"j" + hat"k"` और `2hat"i" - 4hat"j" + lambdahat"k"` समांतर हैं तो λ का मान है
मूल बिंदु से A और B बिंदुओं के सदिश क्रमश: `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, हों तो त्रिभुज OAB का क्षेत्रफल है
यदि तीन सदिश `vec"a", vec"b", vec"c"` इस प्रकार हैं कि `vec"a" + vec"b" + vec"a" = vec0` और `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, है, तो `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` का मान
यदि `|vec"a"|` = 4 और −3 ≤ λ ≤ 2 है तो `|lambdavec"a"|` का अंतराल है
यदि किसी शुन्येतर सदिश `vec"r"` के लिए `vec"r" * vec"a" = 0, vec"r" * vec"b" = 0` और `vec"r" * vec"c" = 0` तब `vec"a" * (vec"b" xx vec"c")` का मान ______ के बराबर है।
सदिश `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` और `vec"b" = -hat"i" - 2hat"k"` एक समांतर चतुर्भुज है। इसके विकर्णों के बीच का न्यूनकोंण ______ है।
यदि k के मानों के लिए `|"k"vec"a"| < |vec"a"|` और `"k"vec"a" + 1/2 vec"a"` सदिश `vec"a"` के समांतर है, तो k के मान ______ हैं।
यदि `|vec"a"| = |vec"b"|` तो यह आवश्यक है कि `vec"a" = +- vec"b"` है।
सूत्र `(vec"a" + vec"b")^2 = vec"a"^2 + vec"b"^2 + 2vec"a" xx vec"b"` शून्येतर `vec"a"` और `vec"b"` सदिशों के लिए सत्य है।