हिंदी

एक सदिश rr→ का परिमाण 14 है तथा दिक्‌-अनुपात 2, 3, - 6 हैं। rr→ के दिक्‌-कोसाइन और'घटक ज्ञात कीजिए जब कि यह दिया है कि x-अक्ष से rr→ न्यून कोण बनता है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक सदिश `vec"r"` का परिमाण 14 है तथा दिक्‌-अनुपात 2, 3, - 6 हैं। `vec"r"` के दिक्‌-कोसाइन और'घटक ज्ञात कीजिए जब कि यह दिया है कि x-अक्ष से `vec"r"` न्यून कोण बनता है।

योग

उत्तर

मान लीजिए `vec"a", vec"b"` तथा `vec"c"` तीन सदिश `vec"a" = 2"k", vec"b"` = 3k तथा `vec"c"` = – 6k इस प्रकार हैं।

यदि l, m और n सदिश `vec"r"` की दिक्‌-कोसाइन हैं, तो

l = `vec"a"/|vec"r"| = (2"k")/14 = "k"/7`

m = `vec"b"/|vec"r"| = (3"k")/14` और n = `vec"c"/|vec"r"| = (-6"k")/14 = (-3"k")/7`

हम जानते हैं कि l2 + m2 + n2 = 1

∴ `"k"^2/49 + (9"k"^2)/196 + (9"k"^2)/49` = 1

⇒ `(4"k"^2 + 9"k"^2 + 36"k"^2)/196` = 1

⇒ 49k2 = 196

⇒ k2 = 4

∴  k = ± 2 और l = `"k"/7 = 2/7`

m = `(3"k")/14 = (3 xx 2)/14 = 3/7`

और n = `(-3"k")/7 (-3 xx 2)/7 = (-6)/7`

∴ `hat"r" = +- (2/7hat"i" + 3/7hat"j" - 6/7hat"k")`

`hat"r" = hat"r"|vec"r"|`

⇒ `vec"r" = +-(2/7hat"i" + 3/7hat"j" - 6/7hat"k")*14`

= `+- (4hat"i" + 6hat"j" - 12hat"k")`

इसलिए, अभीष्ट दिक्‌-कोसाइन `2/7, 3/7, (-6)/7` हैं और `vec"r"` के घटक  `4hat"i", 6hat"j"` और `-12hat"k"` हैं।

shaalaa.com
सदिश बीजगणित
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: सदिश बीजगणित - प्रश्नावली [पृष्ठ २०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 10 सदिश बीजगणित
प्रश्नावली | Q 7 | पृष्ठ २०९

संबंधित प्रश्न

सदिशों `vec"a" = 2hat"i" - hat"j" + 2hat"k"` और `vec"b" = -hat"i" + hat"j" + 3hat"k"`  के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


यदि बिंदु P और Q क्रमश: (1, 3, 2) और (-1, 0, 8) है, तो `vec"PQ"`, के विपरीत दिशा में परिमाण 11 का एक सदिश ज्ञात कीजिए।


P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और  `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में अंत: 


P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में बाहयत: विभाजित करता है।


यदि बिंदु (-1, -1, 2), (2, m, 5) और (3, 11, 6) सरेखी, हैं तो m का मान ज्ञात कीजिए।


यदि `vec"a" = 2hat"i" - hat"j" + hat"k", vec"b" = hat"i" + hat"j" - 2hat"k"`  और `vec"c" = hat"i" + 3hat"j" - hat"k"`, का वह मान ज्ञात कीजिए जिससे `vec"a"` सदिश `lambdavec"b" + vec"c"` पर लंब हो।


सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB


सिद्ध कीजिए कि किसी ∆ABC, में `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, जहाँ a, b, c क्रमश: A, B, C शीर्षों की सम्मुख भुजाओं के परिमाण को निरूपित करते हैं।


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


प्रारम्भिक बिंदु P (2, - 3, 5) और अंतिम बिंदु Q(3, -4, 7) वाला सदिश है


यदि `|vec"a"| = 8, |vec"b"| = 3` और `|vec"a" xx vec"b"| = 12` है, तो `vec"a"*vec"b"` बराबर है


दो सदिश `hat"j" + hat"k"` और `3hat"i" -hat"j" + 4hat"k"` किसी ∆ABC की क्रमश: दो भुजाओं AB और AC को निरूपित करते हैं। बिंदु A से हो कर जाने वाली मध्यिका (मीडियन) की लंबाई है


यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3)  vec"a" - vec"b"` के मात्रक सदिश होने के लिए  `vec"a"` और `vec"b"` के बीच क्या कोण होगा?


एक मात्रक सदिश जो सदिशों `hat"i" - hat"j"` और `hat"i" + hat"j"` दोनों के लंबवत है तथा एक दक्षिणावर्ती पद्धति को निर्मित करने वाला सदिश है।


सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।


परिमाण 6 का एक सदिश ज्ञात कीजिए जो दोनों ही सदिशों  `2hat"i" - hat"j" + 2hat"k"` और `4hat"i" - hat"j" + 3hat"k"` पर लंब है।


सिद्ध कीजिए कि किसी त्रिभुज ABC में cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, होता है जहाँ a, b, c क्रमशः शीषों A, B, C, की सम्मुख भुजाओं के परिमाण हैं।


बिंदु `2vec"a" - 3vec"b"` और `vec"a" + vec"b"` को मिलाने वाले रेखाखंड को 3:1 में विभाजित करने वाले बिंदु का स्थिति सदिश है


दो सदिशों  `vec"a"` और `vec"b"` के परिमाण क्रमश: `sqrt(3)`  और 4 हैं तथा `vec"a" * vec"b" = 2sqrt(3)` है। इनके बीच का कोण है


सदिश `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` और `2hat"i" - hat"j" + lambdahat"k"` समतलीय हैं यदि


सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप


यदि `|vec"a"|` = 4 और −3 ≤ λ ≤ 2 है तो `|lambdavec"a"|` का अंतराल है


सदिशों `vec"a" = 2hat"i" + hat"j" + 2hat"k"` और `vec"b" = hat"j" + hat"k"` दोनों ही पर मात्रक लंब सदिशों की संख्या हैं


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×