मराठी

एक सदिश rr→ का परिमाण 14 है तथा दिक्‌-अनुपात 2, 3, - 6 हैं। rr→ के दिक्‌-कोसाइन और'घटक ज्ञात कीजिए जब कि यह दिया है कि x-अक्ष से rr→ न्यून कोण बनता है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक सदिश `vec"r"` का परिमाण 14 है तथा दिक्‌-अनुपात 2, 3, - 6 हैं। `vec"r"` के दिक्‌-कोसाइन और'घटक ज्ञात कीजिए जब कि यह दिया है कि x-अक्ष से `vec"r"` न्यून कोण बनता है।

बेरीज

उत्तर

मान लीजिए `vec"a", vec"b"` तथा `vec"c"` तीन सदिश `vec"a" = 2"k", vec"b"` = 3k तथा `vec"c"` = – 6k इस प्रकार हैं।

यदि l, m और n सदिश `vec"r"` की दिक्‌-कोसाइन हैं, तो

l = `vec"a"/|vec"r"| = (2"k")/14 = "k"/7`

m = `vec"b"/|vec"r"| = (3"k")/14` और n = `vec"c"/|vec"r"| = (-6"k")/14 = (-3"k")/7`

हम जानते हैं कि l2 + m2 + n2 = 1

∴ `"k"^2/49 + (9"k"^2)/196 + (9"k"^2)/49` = 1

⇒ `(4"k"^2 + 9"k"^2 + 36"k"^2)/196` = 1

⇒ 49k2 = 196

⇒ k2 = 4

∴  k = ± 2 और l = `"k"/7 = 2/7`

m = `(3"k")/14 = (3 xx 2)/14 = 3/7`

और n = `(-3"k")/7 (-3 xx 2)/7 = (-6)/7`

∴ `hat"r" = +- (2/7hat"i" + 3/7hat"j" - 6/7hat"k")`

`hat"r" = hat"r"|vec"r"|`

⇒ `vec"r" = +-(2/7hat"i" + 3/7hat"j" - 6/7hat"k")*14`

= `+- (4hat"i" + 6hat"j" - 12hat"k")`

इसलिए, अभीष्ट दिक्‌-कोसाइन `2/7, 3/7, (-6)/7` हैं और `vec"r"` के घटक  `4hat"i", 6hat"j"` और `-12hat"k"` हैं।

shaalaa.com
सदिश बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: सदिश बीजगणित - प्रश्नावली [पृष्ठ २०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 10 सदिश बीजगणित
प्रश्नावली | Q 7 | पृष्ठ २०९

संबंधित प्रश्‍न

परिमाण 3`sqrt2` का एक सदिश `vec"r"` ज्ञात कीजिए जो y और z-अक्षों से क्रमशः कोण `pi/4` और `pi/2` बनाता है।


सिद्ध कीजिए कि किसी ∆ABC, में `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, जहाँ a, b, c क्रमश: A, B, C शीर्षों की सम्मुख भुजाओं के परिमाण को निरूपित करते हैं।


 सदिश `vec"i" - vec"j"` और सदिश `vec"j" - vec"k"` के बीच का कोण है


x का वह मान जिसके लिए सदिश `2hat"i" - hat"j" + 2hat"k"` और सदिश `3hat"i" - lambdahat"j" + hat"k"` लंबवत है तो λ बराबर है


दो सदिश `hat"j" + hat"k"` और `3hat"i" -hat"j" + 4hat"k"` किसी ∆ABC की क्रमश: दो भुजाओं AB और AC को निरूपित करते हैं। बिंदु A से हो कर जाने वाली मध्यिका (मीडियन) की लंबाई है


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` का सदिश `vec"b" = hat"i" - 2hat"j" + 2hat"k"` के अनुदिश प्रक्षेप बराबर है


यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3)  vec"a" - vec"b"` के मात्रक सदिश होने के लिए  `vec"a"` और `vec"b"` के बीच क्या कोण होगा?


यदि `|vec"a"|` = 3  और –1 ≤ k ≤ 2, है तो `|"k"vec"a"|` निम्नलिखित में से किस अंतराल में है? 


यदि `vec"a" = hat"i" + hat"j" + 2hat"k"` और `hat"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `2vec"a" - vec"b"`


यदि `vec"a"` और `vec"b"` बिंदु A और B के क्रमश: स्थिति सदिश हैं तथा बढ़ाई गई BA में एक बिंदु C इस प्रकार है कि BC = 1.5 BA तो C का स्थिति सदिश ज्ञात कीजिए।


सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।


यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।


यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"` है तो `vec"AB"` का `vec"CD"`  अनुदिश प्रक्षेप ज्ञात कीजिए।


सिद्ध कीजिए कि किसी त्रिभुज ABC में cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, होता है जहाँ a, b, c क्रमशः शीषों A, B, C, की सम्मुख भुजाओं के परिमाण हैं।


सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण `vec"a"` और `vec"b"` द्वारा व्यक्त हैं, `(|vec"a" xx vec"b"|)/2` है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए जिसके विकर्ण  `2hat"i" - hat"j" + hat"k"` और `hat"i" + 3hat"j" - hat"k"` है।


बिंदु `2vec"a" - 3vec"b"` और `vec"a" + vec"b"` को मिलाने वाले रेखाखंड को 3:1 में विभाजित करने वाले बिंदु का स्थिति सदिश है


सदिश जिसका प्रारंभिक और अंतिम बिंदु क्रमश: (2, 5, 0) और (-3, 7, 4) है निम्नलिखित है


यदि सदिश `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` और `vec"b" = hat"i" + 2hat"j" + 3hat"k"` लॉंबिक (orthogonal) हों तो λ का मान है


यदि सदिश `3hat"i" - 6hat"j" + hat"k"` और `2hat"i" - 4hat"j" + lambdahat"k"` समांतर हैं तो λ का मान है


सदिश `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` और `2hat"i" - hat"j" + lambdahat"k"` समतलीय हैं यदि


सदिश `vec"a" + vec"b"` असंरेखी सदिशों `vec"a"` और `vec"b"` के बीच के कोण को समद्विभाजित करता है यदि ______


व्यंजक `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` का मान ______ है।


यदि `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 और `|vec"a"|` = 4, तो `|vec"b"|` ______ के बराबर है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×