मराठी

सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण aa→ और bb→ द्वारा व्यक्त हैं, ab|a→×b→|2 है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण `vec"a"` और `vec"b"` द्वारा व्यक्त हैं, `(|vec"a" xx vec"b"|)/2` है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए जिसके विकर्ण  `2hat"i" - hat"j" + hat"k"` और `hat"i" + 3hat"j" - hat"k"` है।

बेरीज

उत्तर

मान लीजिए ABCD एक ऐसा समांतर चतुर्भुज है कि,

`vec"AB" = vec"p"`

`vec"AD" = vec"q" = vec"BC"`

∴ त्रिभुज के नियम से, हम प्राप्त करते हैं

`vec"AC" = vec"a" = vec"p" + vec"q"`  .....(i)

और `vec"BD" = vec"b" = -vec"p" + vec"q"` .....(ii)

समीकरण (i) और (ii) को जोड़ने पर हमें प्राप्त होता है,

`vec"a" + vec"b" = 2vec"q"`

⇒ `vec"q" = ((vec"a" + vec"b")/2)`

समीकरण (ii) को समीकरण (i) से घटाने पर हमें प्राप्त होता है।

`vec"a" - vec"b" = 2vec"p"`

⇒ `vec"p" = ((vec"a" - vec"b")/2)`

∴ `vec"p" xx vec"q" = 1/4(vec"a" + vec"b") xx (vec"a" - vec"b")`

= `1/4 (vec"a" xx vec"a" - vec"a" xx vec"b" + vec"b" xx vec"a" - vec"b" xx vec"b")`

= `1/4(-vec"a" xx vec"b" xx vec"b" xx vec"a")`  ......`[("क्योंकि"  vec"a" xx vec"a" = 0),(vec"b" xx vec"b" = 0)]`

= `1/4(vec"a" xx vec"b" + vec"a" xx vec"b")`

= `1/4 * 2(vec"a" xx vec"b")`

= `|vec"a" xx vec"b"|/2`

तो, समांतर चतुर्भुज ABCD का क्षेत्रफल = `|vec"p" xx vec"q"| = 1/2|vec"a" xx vec"b"|`

अब समांतर चतुर्भुज का क्षेत्रफल जिसके विकर्ण `2hat"i" - hat"j" + hat"k"` तथा `hat"i" + 3hat"j" - hat"k"` हैं। 

= `1/2|(2hat"i" - hat"j" + hat"k") xx (hat"i" + 3hat"j" - hat"k")|`

= `-|(hat"i", hat"j", hat"k"),(2, 1, 1),(1, 3, 1)|`

= `1/2 |hat"i"(1 - 3) - hat"j"(-2 - 1) + hat"k"(6 + 1)|`

= `1/2 - 2hat"i" + 3hat"j" + 7hat"k"|`

= `1/2 sqrt((-2)^2 + (3)^2 + (7)^2)`

= `1/2 sqrt(4 + 9 + 49)`

= `1/2 sqrt(62)` वर्ग इकाई

इसलिए, अभीष्ट क्षेत्रफल `1/2 sqrt(62)` वर्ग इकाई है।

shaalaa.com
सदिश बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: सदिश बीजगणित - प्रश्नावली [पृष्ठ २१०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 10 सदिश बीजगणित
प्रश्नावली | Q 17 | पृष्ठ २१०

संबंधित प्रश्‍न

सदिशों `vec"a" = 2hat"i" - hat"j" + 2hat"k"` और `vec"b" = -hat"i" + hat"j" + 3hat"k"`  के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


परिमाण 3`sqrt2` का एक सदिश `vec"r"` ज्ञात कीजिए जो y और z-अक्षों से क्रमशः कोण `pi/4` और `pi/2` बनाता है।


सदिश `6vec"i" + 2vec"j" + 3vec"k"` का परिमाण है


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


प्रारम्भिक बिंदु P (2, - 3, 5) और अंतिम बिंदु Q(3, -4, 7) वाला सदिश है


समांतर चतुर्भुज, का क्षेत्रफल जिसकी संलग्न भुजाएँ  `hat"i" + hat"k"` और `2hat"i" + hat"j"+ hat"k"` है


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` का सदिश `vec"b" = hat"i" - 2hat"j" + 2hat"k"` के अनुदिश प्रक्षेप बराबर है


यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3)  vec"a" - vec"b"` के मात्रक सदिश होने के लिए  `vec"a"` और `vec"b"` के बीच क्या कोण होगा?


`vec"PQ"` की दिशा में मात्रक संदिश ज्ञात कीजिए जहाँ P और Q के निर्देशांक क्रमश: (5, 0, 8) और (3, 3, 2) हैं।


एक सदिश `vec"r"` तीनों अक्षों से समान कोण पर झुका हुआ है। यदि `vec"r"` का परिमाण `2sqrt3` इकाई है तो `vec"r"` ज्ञात कीजिए।


परिमाण 6 का एक सदिश ज्ञात कीजिए जो दोनों ही सदिशों  `2hat"i" - hat"j" + 2hat"k"` और `4hat"i" - hat"j" + 3hat"k"` पर लंब है।


सदिश दर `vec"a" = 3hat"i" + hat"j" + 2hat"k"` तथा सदिश `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"` के बीच का sine ज्ञात कीजिए।


यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"` है तो `vec"AB"` का `vec"CD"`  अनुदिश प्रक्षेप ज्ञात कीजिए।


सदिशों के प्रयोग से सिद्ध कीजिए कि एक ही आधार और एक ही समांतर रेखाओं के मध्य स्थित समांतर चतुर्भुजों के क्षेत्रफल बराबर होते हैं।


यदि  `vec"a" = hat"i" + hat"j" + hat"k"` और `vec"b" = hat"j" - hat"k"` तो सदिश  `vec"c"` ज्ञात कीजिए इस प्रकार कि  `vec"a" xx vec"c" = vec"b"` और `vec"a"*vec"c"` = 3.


बिंदु `2vec"a" - 3vec"b"` और `vec"a" + vec"b"` को मिलाने वाले रेखाखंड को 3:1 में विभाजित करने वाले बिंदु का स्थिति सदिश है


यदि सदिश `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` और `vec"b" = hat"i" + 2hat"j" + 3hat"k"` लॉंबिक (orthogonal) हों तो λ का मान है


किसी भी सदिश `vec"a"` के लिए `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` का मान बराबर है


यदि `|vec"a"|` = 10, `|vec"b"|` = 2 और `vec"a".vec"b"` = 12, हो तो `|vec"a" xx vec"b"|` का मान है


सदिश `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` और `2hat"i" - hat"j" + lambdahat"k"` समतलीय हैं यदि


सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप


सदिशों `vec"a" = 2hat"i" + hat"j" + 2hat"k"` और `vec"b" = hat"j" + hat"k"` दोनों ही पर मात्रक लंब सदिशों की संख्या हैं


सदिश `vec"a" + vec"b"` असंरेखी सदिशों `vec"a"` और `vec"b"` के बीच के कोण को समद्विभाजित करता है यदि ______


 सदिश  `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` और `vec"b" = -hat"i" - 2hat"k"` एक समांतर चतुर्भुज है। इसके विकर्णों के बीच का न्यूनकोंण ______ है।


यदि k के मानों के लिए  `|"k"vec"a"| < |vec"a"|` और `"k"vec"a" + 1/2   vec"a"` सदिश `vec"a"` के समांतर है, तो k के मान ______ हैं। 


यदि `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 और `|vec"a"|` = 4, तो `|vec"b"|` ______ के बराबर है।


यदि `|vec"a"| = |vec"b"|` तो यह आवश्यक है कि  `vec"a" = +- vec"b"` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×