मराठी

यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: ijkijkikijki^+j^-k^,2i^-j^+3k^,2i^-3k^,3i^-2j^+k^ है तो ABAB→ का CDCD→ अनुदिश प्रक्षेप ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"` है तो `vec"AB"` का `vec"CD"`  अनुदिश प्रक्षेप ज्ञात कीजिए।

बेरीज

उत्तर

यहाँ, A का स्थिति सदिश = `hat"i" + hat"j" - hat"k"`

B का स्थिति सदिश = `2hat"i" - hat"j" + 3hat"k"`

C का स्थिति सदिश = `2hat"i" - 3hat"k"`

D का स्थिति सदिश = `3hat"i" - 2hat"j" + hat"k"`

`vec"AB"` = B का स्थिति सदिश – A का स्थिति सदिश

= `(2hat"i" - hat"j" + 3hat"k") - (hat"i" + hat"j" - hat"k")`

= `hat"i" - 2hat"j" + 4hat"k"`

`vec"CD"` = D का स्थिति सदिश – C का स्थिति सदिश

= `(3hat"i" - 2hat"j" + hat"k") - (2hat"i" - 3hat"k")`

= `hat"i" - 2hat"j" + 4hat"k"`

`vec"AB"` का `vec"CD"  "पर प्रक्षेप" = (vec"AB" * vec"Cd")/|vec"CD"|`

= `((hat"i" - 2hat"j" + 4hat"k") * (hat"i" - 2hat"j" + 4hat"k"))/sqrt((1)^2 + (-2)^2 + (4)^2)`

= `(1 + 4 + 16)/sqrt(1 + 4 + 16)`

= `21/sqrt(21)`

= `sqrt(21)`

अत: अभीष्ट प्रक्षेप = `sqrt(21)`.

shaalaa.com
सदिश बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: सदिश बीजगणित - प्रश्नावली [पृष्ठ २१०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 10 सदिश बीजगणित
प्रश्नावली | Q 12 | पृष्ठ २१०

संबंधित प्रश्‍न

सदिशों `vec"a" = 2hat"i" - hat"j" + 2hat"k"` और `vec"b" = -hat"i" + hat"j" + 3hat"k"`  के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और  `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में अंत: 


यदि बिंदु (-1, -1, 2), (2, m, 5) और (3, 11, 6) सरेखी, हैं तो m का मान ज्ञात कीजिए।


परिमाण 10`sqrt3` वाले उन सभी सदिशों को ज्ञात कीजिए जो  `hat"i" + 2hat"j" + hat"k"` और `-hat"i" + 3hat"j" + 4hat"k"` को अंतर्विष्ट करने वाले तल पर लंब हो।


सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB


सिद्ध कीजिए कि किसी ∆ABC, में `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, जहाँ a, b, c क्रमश: A, B, C शीर्षों की सम्मुख भुजाओं के परिमाण को निरूपित करते हैं।


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


दो सदिश `hat"j" + hat"k"` और `3hat"i" -hat"j" + 4hat"k"` किसी ∆ABC की क्रमश: दो भुजाओं AB और AC को निरूपित करते हैं। बिंदु A से हो कर जाने वाली मध्यिका (मीडियन) की लंबाई है


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` का सदिश `vec"b" = hat"i" - 2hat"j" + 2hat"k"` के अनुदिश प्रक्षेप बराबर है


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` और `vec"b" = 2hat"j" + hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


`vec"PQ"` की दिशा में मात्रक संदिश ज्ञात कीजिए जहाँ P और Q के निर्देशांक क्रमश: (5, 0, 8) और (3, 3, 2) हैं।


यदि `vec"a"` और `vec"b"` बिंदु A और B के क्रमश: स्थिति सदिश हैं तथा बढ़ाई गई BA में एक बिंदु C इस प्रकार है कि BC = 1.5 BA तो C का स्थिति सदिश ज्ञात कीजिए।


सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।


यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।


सदिश दर `vec"a" = 3hat"i" + hat"j" + 2hat"k"` तथा सदिश `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"` के बीच का sine ज्ञात कीजिए।


सदिशों के प्रयोग से त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए यदि जिसके शीर्ष A (1, 2, 3), B (2, -1, 4) और C (4, 5, -1) है।


सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण `vec"a"` और `vec"b"` द्वारा व्यक्त हैं, `(|vec"a" xx vec"b"|)/2` है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए जिसके विकर्ण  `2hat"i" - hat"j" + hat"k"` और `hat"i" + 3hat"j" - hat"k"` है।


सदिश `hat"i" - 2hat"j" + 2hat"k"` की दिशा में परिमाण 9 वाला सदिश है


बिंदु `2vec"a" - 3vec"b"` और `vec"a" + vec"b"` को मिलाने वाले रेखाखंड को 3:1 में विभाजित करने वाले बिंदु का स्थिति सदिश है


मूल बिंदु से A और B बिंदुओं के सदिश क्रमश: `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, हों तो त्रिभुज OAB का क्षेत्रफल है


सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप


यदि तीन सदिश `vec"a", vec"b", vec"c"` इस प्रकार हैं कि `vec"a" + vec"b" + vec"a" = vec0` और `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, है, तो `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"`  का मान


सदिशों `vec"a" = 2hat"i" + hat"j" + 2hat"k"` और `vec"b" = hat"j" + hat"k"` दोनों ही पर मात्रक लंब सदिशों की संख्या हैं


सदिश `vec"a" + vec"b"` असंरेखी सदिशों `vec"a"` और `vec"b"` के बीच के कोण को समद्विभाजित करता है यदि ______


व्यंजक `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` का मान ______ है।


किसी बिंदु P का स्थिति सदिश का प्रारंभिक बिंदु मूल बिंदु होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×