Advertisements
Advertisements
प्रश्न
सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।
उत्तर
मान लीजिए दिए गए बिंदु A(k, 10, 3), B(1, 1, 3) और C(3, 5, 3) हैं।
`vec"AB" = (1 - "k")hat"i" + (-1 + 10)hat"j" + (3 - 3)hat"k"`
`vec"AB" = (1 - "k")hat"i" + 9hat"j" + 0hat"k"`
∴ `|vec"AB"| = sqrt((1 - "k")^2 + (9)^2)`
= `sqrt((1 - "k")^2 + 81)`
`vec"BC" = (3 - 1)hat"i" + (5 + 1)hat"j" + (3 - 3)hat"k"`
= `2hat"i" + 6hat"j" + 0hat"k"`
∴ `|vec"BC"| = sqrt((2)^2 + (6)^2)`
= `sqrt(4 + 36)`
= `sqrt(40)`
= `2sqrt(10)`
`vec"AC" = (3 - "k")hat"i" + (5 + 10)hat"j" + (3 - 3)hat"k"`
= `(3 - "k")hat"i" + 15hat"j" + 0hat"k"`
∴ `|vec"AC"| = sqrt((3 - "k")^2 + (15)^2)`
= `sqrt((3 - "k")^2 + 225)`
यदि A, B और C संरेख हैं, तो
`|vec"AB"| + |vec"BC"| = |vec"AC"|`
`sqrt((1 - "k")^2 + 81) + sqrt(40) = sqrt((3 - "k")^2 + 225)`
हम जानते हैं कि, दोनों पक्षों का वर्ग करने पर
`[sqrt((1 - "k")^2 + 81) + sqrt(40)]^2 = [sqrt((3 - "k")^2 + 225)]^2`
⇒ `(1 - "k")^2 + 81 + 40 + 2sqrt(40) sqrt((1 - "k")^2 + 81) = (3 - "k")^2 + 225`
⇒ `1 + "k"^2 - 2"k" + 121 + 2sqrt(40) sqrt(1 + "k"^2 - 2"k" + 81) =9 + "k"^2 - 6"k" + 225`
⇒ `122 - 2"k" + 2sqrt(40) sqrt("k"^2 - 2"k" + 82) = 234 - 6"k"`
2 से भाग देने पर हमें प्राप्त होता है
⇒ `61 - "k" + sqrt(40) sqrt("k"^2 - 2"k" + 82) = 117 - 3"k"`
⇒ `sqrt(40) sqrt("k"^2 - 2"k" + 82) = 117 - 61 - 3"k" + "k"`
⇒ `sqrt(40) sqrt("k"^2 - 2"k" + 82) = 56 - 2"k"`
⇒ `sqrt(10) sqrt("k"^2 - 2"k" + 82) = 28 - "k"` ...(2 से भाग देना)
दोनों पक्षों का वर्ग करने पर हमें प्राप्त होता है
⇒ 10(k2 – 2k + 82) = 784 + k2 – 56k
⇒ 10k2 – 20k + 820 = 784 + k2 – 56k
⇒ 10k2 – k2 – 20k + 56k + 820 – 784 = 0
⇒ 9k2 + 36k + 36 = 0
⇒ k2 + 4k + 4 = 0
⇒ (k + 2)2 = 0
⇒ k = – 2
⇒ k = – 2
इसलिए, अभीष्ट मान k = – 2 है।
APPEARS IN
संबंधित प्रश्न
सदिशों `vec"a" = 2hat"i" - hat"j" + 2hat"k"` और `vec"b" = -hat"i" + hat"j" + 3hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।
उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,
प्रारम्भिक बिंदु P (2, - 3, 5) और अंतिम बिंदु Q(3, -4, 7) वाला सदिश है
सदिश `vec"i" - vec"j"` और सदिश `vec"j" - vec"k"` के बीच का कोण है
x का वह मान जिसके लिए सदिश `2hat"i" - hat"j" + 2hat"k"` और सदिश `3hat"i" - lambdahat"j" + hat"k"` लंबवत है तो λ बराबर है
समांतर चतुर्भुज, का क्षेत्रफल जिसकी संलग्न भुजाएँ `hat"i" + hat"k"` और `2hat"i" + hat"j"+ hat"k"` है
दो सदिश `hat"j" + hat"k"` और `3hat"i" -hat"j" + 4hat"k"` किसी ∆ABC की क्रमश: दो भुजाओं AB और AC को निरूपित करते हैं। बिंदु A से हो कर जाने वाली मध्यिका (मीडियन) की लंबाई है
सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` का सदिश `vec"b" = hat"i" - 2hat"j" + 2hat"k"` के अनुदिश प्रक्षेप बराबर है
एक मात्रक सदिश जो सदिशों `hat"i" - hat"j"` और `hat"i" + hat"j"` दोनों के लंबवत है तथा एक दक्षिणावर्ती पद्धति को निर्मित करने वाला सदिश है।
सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` और `vec"b" = 2hat"j" + hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।
यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।
यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"` है तो `vec"AB"` का `vec"CD"` अनुदिश प्रक्षेप ज्ञात कीजिए।
सदिशों के प्रयोग से सिद्ध कीजिए कि एक ही आधार और एक ही समांतर रेखाओं के मध्य स्थित समांतर चतुर्भुजों के क्षेत्रफल बराबर होते हैं।
सिद्ध कीजिए कि किसी त्रिभुज ABC में cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, होता है जहाँ a, b, c क्रमशः शीषों A, B, C, की सम्मुख भुजाओं के परिमाण हैं।
सदिश जिसका प्रारंभिक और अंतिम बिंदु क्रमश: (2, 5, 0) और (-3, 7, 4) है निम्नलिखित है
दो सदिशों `vec"a"` और `vec"b"` के परिमाण क्रमश: `sqrt(3)` और 4 हैं तथा `vec"a" * vec"b" = 2sqrt(3)` है। इनके बीच का कोण है
यदि सदिश `3hat"i" - 6hat"j" + hat"k"` और `2hat"i" - 4hat"j" + lambdahat"k"` समांतर हैं तो λ का मान है
मूल बिंदु से A और B बिंदुओं के सदिश क्रमश: `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, हों तो त्रिभुज OAB का क्षेत्रफल है
सदिश `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` और `2hat"i" - hat"j" + lambdahat"k"` समतलीय हैं यदि
सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप
यदि तीन सदिश `vec"a", vec"b", vec"c"` इस प्रकार हैं कि `vec"a" + vec"b" + vec"a" = vec0` और `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, है, तो `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` का मान
यदि `|vec"a"|` = 4 और −3 ≤ λ ≤ 2 है तो `|lambdavec"a"|` का अंतराल है
सदिशों `vec"a" = 2hat"i" + hat"j" + 2hat"k"` और `vec"b" = hat"j" + hat"k"` दोनों ही पर मात्रक लंब सदिशों की संख्या हैं
यदि k के मानों के लिए `|"k"vec"a"| < |vec"a"|` और `"k"vec"a" + 1/2 vec"a"` सदिश `vec"a"` के समांतर है, तो k के मान ______ हैं।
यदि `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 और `|vec"a"|` = 4, तो `|vec"b"|` ______ के बराबर है।
यदि `|vec"a"| = |vec"b"|` तो यह आवश्यक है कि `vec"a" = +- vec"b"` है।
यदि `|vec"a" + vec"b"| = |vec"a" - vec"b"|` है तब सदिश `vec"a"` और `vec"b"` लांबिक (orthogonol) हैं।