मराठी

सदिश aa→ का सदिश bb→ पर प्रक्षेप - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप

पर्याय

  • `((vec"a"*vec"b")/|vec"b"|^2)vec"b"`

  • `(vec"a"*vec"b")/|vec"b"|`

  • `(vec"a"*vec"b")/|vec"a"|`

  • `((vec"a"*vec"b")/|vec"a"|^2)hat"b"` है

MCQ

उत्तर

सही उत्तर `underline(((vec"a"*vec"b")/|vec"b"|^2)vec"b")`  है। 

व्याख्या:

मान लीजिए कि `vec"a"` तथा `vec"b"` क्रमशः `vec"OA"` तथा `vec"OB"` द्वारा निरूपित दो सदिश हों।

अब `vec"a"*vec"b" = |vec"a"||vec"b"| cos theta`

= `|vec"b"|(|vec"a"|costheta)`

= `|vec"b"|("OA" cos theta)`

= `|vec"b"|("OL")`

⇒ OL = `(vec"a" * vec"b")/|vec"b"|`

⇒ सदिश `vec"a"` का `vec"b"  "पर प्रक्षेप" = (vec"a"*vec"b"  vec"b")/(|vec"b"|  |vec"b"|)`

= `(vec"a"*vec"b")/|vec"b"|^2 vec"b"`

shaalaa.com
सदिश बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: सदिश बीजगणित - प्रश्नावली [पृष्ठ २१२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 10 सदिश बीजगणित
प्रश्नावली | Q 30 | पृष्ठ २१२

संबंधित प्रश्‍न

P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और  `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में अंत: 


यदि बिंदु (-1, -1, 2), (2, m, 5) और (3, 11, 6) सरेखी, हैं तो m का मान ज्ञात कीजिए।


यदि `vec"a" = 2hat"i" - hat"j" + hat"k", vec"b" = hat"i" + hat"j" - 2hat"k"`  और `vec"c" = hat"i" + 3hat"j" - hat"k"`, का वह मान ज्ञात कीजिए जिससे `vec"a"` सदिश `lambdavec"b" + vec"c"` पर लंब हो।


सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB


सिद्ध कीजिए कि किसी ∆ABC, में `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, जहाँ a, b, c क्रमश: A, B, C शीर्षों की सम्मुख भुजाओं के परिमाण को निरूपित करते हैं।


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


x का वह मान जिसके लिए सदिश `2hat"i" - hat"j" + 2hat"k"` और सदिश `3hat"i" - lambdahat"j" + hat"k"` लंबवत है तो λ बराबर है


समांतर चतुर्भुज, का क्षेत्रफल जिसकी संलग्न भुजाएँ  `hat"i" + hat"k"` और `2hat"i" + hat"j"+ hat"k"` है


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` और `vec"b" = 2hat"j" + hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


यदि  `vec"a" = hat"i" + hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `6vec"b"`


यदि `vec"a"` और `vec"b"` बिंदु A और B के क्रमश: स्थिति सदिश हैं तथा बढ़ाई गई BA में एक बिंदु C इस प्रकार है कि BC = 1.5 BA तो C का स्थिति सदिश ज्ञात कीजिए।


सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।


एक सदिश `vec"r"` का परिमाण 14 है तथा दिक्‌-अनुपात 2, 3, - 6 हैं। `vec"r"` के दिक्‌-कोसाइन और'घटक ज्ञात कीजिए जब कि यह दिया है कि x-अक्ष से `vec"r"` न्यून कोण बनता है।


यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।


सदिश दर `vec"a" = 3hat"i" + hat"j" + 2hat"k"` तथा सदिश `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"` के बीच का sine ज्ञात कीजिए।


यदि  `vec"a" = hat"i" + hat"j" + hat"k"` और `vec"b" = hat"j" - hat"k"` तो सदिश  `vec"c"` ज्ञात कीजिए इस प्रकार कि  `vec"a" xx vec"c" = vec"b"` और `vec"a"*vec"c"` = 3.


सदिश जिसका प्रारंभिक और अंतिम बिंदु क्रमश: (2, 5, 0) और (-3, 7, 4) है निम्नलिखित है


दो सदिशों  `vec"a"` और `vec"b"` के परिमाण क्रमश: `sqrt(3)`  और 4 हैं तथा `vec"a" * vec"b" = 2sqrt(3)` है। इनके बीच का कोण है


यदि सदिश `3hat"i" - 6hat"j" + hat"k"` और `2hat"i" - 4hat"j" + lambdahat"k"` समांतर हैं तो λ का मान है


किसी भी सदिश `vec"a"` के लिए `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` का मान बराबर है


सदिश `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` और `2hat"i" - hat"j" + lambdahat"k"` समतलीय हैं यदि


यदि `|vec"a"|` = 4 और −3 ≤ λ ≤ 2 है तो `|lambdavec"a"|` का अंतराल है


सदिशों `vec"a" = 2hat"i" + hat"j" + 2hat"k"` और `vec"b" = hat"j" + hat"k"` दोनों ही पर मात्रक लंब सदिशों की संख्या हैं


यदि किसी शुन्येतर सदिश `vec"r"` के लिए `vec"r" * vec"a" = 0, vec"r" * vec"b" = 0` और `vec"r" * vec"c" = 0` तब `vec"a" * (vec"b" xx vec"c")` का मान ______ के बराबर है।


यदि k के मानों के लिए  `|"k"vec"a"| < |vec"a"|` और `"k"vec"a" + 1/2   vec"a"` सदिश `vec"a"` के समांतर है, तो k के मान ______ हैं। 


सूत्र  `(vec"a" + vec"b")^2 = vec"a"^2 + vec"b"^2 + 2vec"a" xx vec"b"` शून्येतर `vec"a"` और `vec"b"` सदिशों के लिए सत्य है।


यदि `vec"a"` और `vec"b"` समचतुर्भुज की संलग्न भुजाएँ हैं तब `vec"a" * vec"b"` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×