मराठी

यदि किसी शुन्येतर सदिश rr→ के लिए rarbr→⋅a→=0,r→⋅b→=0 और rcr→⋅c→=0 तब abca→⋅(b→×c→) का मान ______ के बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि किसी शुन्येतर सदिश `vec"r"` के लिए `vec"r" * vec"a" = 0, vec"r" * vec"b" = 0` और `vec"r" * vec"c" = 0` तब `vec"a" * (vec"b" xx vec"c")` का मान ______ के बराबर है।

रिकाम्या जागा भरा

उत्तर

यदि किसी शुन्येतर सदिश `vec"r"` के लिए `vec"r" * vec"a" = 0, vec"r" * vec"b" = 0` और `vec"r" * vec"c" = 0` तब `vec"a" * (vec"b" xx vec"c")` का मान 0 के बराबर है।

व्याख्या:

यदि `vec"r"` एक शुन्येतर सदिश है, तो `vec"a", vec"b"` और `vec"c"` एक ही विमान में हो सकते हैं।

क्योंकि `vec"a"`, और `vec"c"` के बीच के कोण शून्य हैं

अर्थात θ = 0

∴ `vec"a" * (vec"b" xx vec"c")` = 0

इसलिए अभीष्ट मान 0 है।

shaalaa.com
सदिश बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: सदिश बीजगणित - प्रश्नावली [पृष्ठ २१३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 10 सदिश बीजगणित
प्रश्नावली | Q 35 | पृष्ठ २१३

संबंधित प्रश्‍न

यदि बिंदु P और Q क्रमश: (1, 3, 2) और (-1, 0, 8) है, तो `vec"PQ"`, के विपरीत दिशा में परिमाण 11 का एक सदिश ज्ञात कीजिए।


यदि बिंदु (-1, -1, 2), (2, m, 5) और (3, 11, 6) सरेखी, हैं तो m का मान ज्ञात कीजिए।


परिमाण 3`sqrt2` का एक सदिश `vec"r"` ज्ञात कीजिए जो y और z-अक्षों से क्रमशः कोण `pi/4` और `pi/2` बनाता है।


परिमाण 10`sqrt3` वाले उन सभी सदिशों को ज्ञात कीजिए जो  `hat"i" + 2hat"j" + hat"k"` और `-hat"i" + 3hat"j" + 4hat"k"` को अंतर्विष्ट करने वाले तल पर लंब हो।


सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


 सदिश `vec"i" - vec"j"` और सदिश `vec"j" - vec"k"` के बीच का कोण है


दो सदिश `hat"j" + hat"k"` और `3hat"i" -hat"j" + 4hat"k"` किसी ∆ABC की क्रमश: दो भुजाओं AB और AC को निरूपित करते हैं। बिंदु A से हो कर जाने वाली मध्यिका (मीडियन) की लंबाई है


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` का सदिश `vec"b" = hat"i" - 2hat"j" + 2hat"k"` के अनुदिश प्रक्षेप बराबर है


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` और `vec"b" = 2hat"j" + hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


यदि  `vec"a" = hat"i" + hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `6vec"b"`


एक सदिश `vec"r"` तीनों अक्षों से समान कोण पर झुका हुआ है। यदि `vec"r"` का परिमाण `2sqrt3` इकाई है तो `vec"r"` ज्ञात कीजिए।


एक सदिश `vec"r"` का परिमाण 14 है तथा दिक्‌-अनुपात 2, 3, - 6 हैं। `vec"r"` के दिक्‌-कोसाइन और'घटक ज्ञात कीजिए जब कि यह दिया है कि x-अक्ष से `vec"r"` न्यून कोण बनता है।


सदिशों `2hat"i" - hat"j" + hat"k"` और `3hat"i" + 4hat"j" - hat"k"` के बीच का कोण ज्ञात कीजिए।


यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।


यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"` है तो `vec"AB"` का `vec"CD"`  अनुदिश प्रक्षेप ज्ञात कीजिए।


यदि सदिश `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` और `vec"b" = hat"i" + 2hat"j" + 3hat"k"` लॉंबिक (orthogonal) हों तो λ का मान है


मूल बिंदु से A और B बिंदुओं के सदिश क्रमश: `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, हों तो त्रिभुज OAB का क्षेत्रफल है


किसी भी सदिश `vec"a"` के लिए `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` का मान बराबर है


सदिश `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` और `2hat"i" - hat"j" + lambdahat"k"` समतलीय हैं यदि


यदि `vec"a", vec"b", vec"c"` इस प्रकार के मात्रक सदिश हैं कि `vec"a" + vec"b" + vec"c"` = 0 है तो `vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a"` का मान


यदि तीन सदिश `vec"a", vec"b", vec"c"` इस प्रकार हैं कि `vec"a" + vec"b" + vec"a" = vec0` और `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, है, तो `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"`  का मान


यदि `vec"a"` कोई शुन्येतर सदिश है तो `(vec"a" .hat"i")hat"i" + (vec"a".hat"j")hat"j" + (vec"a".hat"k")hat"k"` ______ के बराबर है।


किसी बिंदु P का स्थिति सदिश का प्रारंभिक बिंदु मूल बिंदु होता है।


सूत्र  `(vec"a" + vec"b")^2 = vec"a"^2 + vec"b"^2 + 2vec"a" xx vec"b"` शून्येतर `vec"a"` और `vec"b"` सदिशों के लिए सत्य है।


यदि `vec"a"` और `vec"b"` समचतुर्भुज की संलग्न भुजाएँ हैं तब `vec"a" * vec"b"` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×