Advertisements
Advertisements
Question
सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप
Options
`((vec"a"*vec"b")/|vec"b"|^2)vec"b"`
`(vec"a"*vec"b")/|vec"b"|`
`(vec"a"*vec"b")/|vec"a"|`
`((vec"a"*vec"b")/|vec"a"|^2)hat"b"` है
Solution
सही उत्तर `underline(((vec"a"*vec"b")/|vec"b"|^2)vec"b")` है।
व्याख्या:
मान लीजिए कि `vec"a"` तथा `vec"b"` क्रमशः `vec"OA"` तथा `vec"OB"` द्वारा निरूपित दो सदिश हों।
अब `vec"a"*vec"b" = |vec"a"||vec"b"| cos theta`
= `|vec"b"|(|vec"a"|costheta)`
= `|vec"b"|("OA" cos theta)`
= `|vec"b"|("OL")`
⇒ OL = `(vec"a" * vec"b")/|vec"b"|`
⇒ सदिश `vec"a"` का `vec"b" "पर प्रक्षेप" = (vec"a"*vec"b" vec"b")/(|vec"b"| |vec"b"|)`
= `(vec"a"*vec"b")/|vec"b"|^2 vec"b"`
APPEARS IN
RELATED QUESTIONS
परिमाण 10`sqrt3` वाले उन सभी सदिशों को ज्ञात कीजिए जो `hat"i" + 2hat"j" + hat"k"` और `-hat"i" + 3hat"j" + 4hat"k"` को अंतर्विष्ट करने वाले तल पर लंब हो।
सिद्ध कीजिए कि किसी ∆ABC, में `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, जहाँ a, b, c क्रमश: A, B, C शीर्षों की सम्मुख भुजाओं के परिमाण को निरूपित करते हैं।
सदिश `6vec"i" + 2vec"j" + 3vec"k"` का परिमाण है
उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,
सदिश `vec"i" - vec"j"` और सदिश `vec"j" - vec"k"` के बीच का कोण है
x का वह मान जिसके लिए सदिश `2hat"i" - hat"j" + 2hat"k"` और सदिश `3hat"i" - lambdahat"j" + hat"k"` लंबवत है तो λ बराबर है
समांतर चतुर्भुज, का क्षेत्रफल जिसकी संलग्न भुजाएँ `hat"i" + hat"k"` और `2hat"i" + hat"j"+ hat"k"` है
यदि `|vec"a"| = 8, |vec"b"| = 3` और `|vec"a" xx vec"b"| = 12` है, तो `vec"a"*vec"b"` बराबर है
सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` का सदिश `vec"b" = hat"i" - 2hat"j" + 2hat"k"` के अनुदिश प्रक्षेप बराबर है
यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3) vec"a" - vec"b"` के मात्रक सदिश होने के लिए `vec"a"` और `vec"b"` के बीच क्या कोण होगा?
एक मात्रक सदिश जो सदिशों `hat"i" - hat"j"` और `hat"i" + hat"j"` दोनों के लंबवत है तथा एक दक्षिणावर्ती पद्धति को निर्मित करने वाला सदिश है।
यदि `|vec"a"|` = 3 और –1 ≤ k ≤ 2, है तो `|"k"vec"a"|` निम्नलिखित में से किस अंतराल में है?
यदि `vec"a" = hat"i" + hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `6vec"b"`
परिमाण 6 का एक सदिश ज्ञात कीजिए जो दोनों ही सदिशों `2hat"i" - hat"j" + 2hat"k"` और `4hat"i" - hat"j" + 3hat"k"` पर लंब है।
यदि `vec"a", vec"b", vec"c"` किसी त्रिभुज के शीर्षों को निर्धारित करते हैं तो, सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल `1/2[vec"b" xx vec"c" + vec"c" xx vec"a" + vec"a" xx vec"b"]` है। इसके प्रयोग से तीन बिंदुओं `vec"a", vec"b", vec"c"` के संरेखी होने के प्रतिबंध का निगमन कीजिए। साथ ही त्रिभुज के तल पर अभिलंब मात्रक सदिश भी ज्ञात कीजिए।
सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण `vec"a"` और `vec"b"` द्वारा व्यक्त हैं, `(|vec"a" xx vec"b"|)/2` है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए जिसके विकर्ण `2hat"i" - hat"j" + hat"k"` और `hat"i" + 3hat"j" - hat"k"` है।
यदि `vec"a" = hat"i" + hat"j" + hat"k"` और `vec"b" = hat"j" - hat"k"` तो सदिश `vec"c"` ज्ञात कीजिए इस प्रकार कि `vec"a" xx vec"c" = vec"b"` और `vec"a"*vec"c"` = 3.
सदिश जिसका प्रारंभिक और अंतिम बिंदु क्रमश: (2, 5, 0) और (-3, 7, 4) है निम्नलिखित है
दो सदिशों `vec"a"` और `vec"b"` के परिमाण क्रमश: `sqrt(3)` और 4 हैं तथा `vec"a" * vec"b" = 2sqrt(3)` है। इनके बीच का कोण है
किसी भी सदिश `vec"a"` के लिए `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` का मान बराबर है
यदि `|vec"a"|` = 10, `|vec"b"|` = 2 और `vec"a".vec"b"` = 12, हो तो `|vec"a" xx vec"b"|` का मान है
यदि `vec"a", vec"b", vec"c"` इस प्रकार के मात्रक सदिश हैं कि `vec"a" + vec"b" + vec"c"` = 0 है तो `vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a"` का मान
सदिश `vec"a" + vec"b"` असंरेखी सदिशों `vec"a"` और `vec"b"` के बीच के कोण को समद्विभाजित करता है यदि ______
सदिश `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` और `vec"b" = -hat"i" - 2hat"k"` एक समांतर चतुर्भुज है। इसके विकर्णों के बीच का न्यूनकोंण ______ है।
यदि k के मानों के लिए `|"k"vec"a"| < |vec"a"|` और `"k"vec"a" + 1/2 vec"a"` सदिश `vec"a"` के समांतर है, तो k के मान ______ हैं।
व्यंजक `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` का मान ______ है।
यदि `vec"a"` कोई शुन्येतर सदिश है तो `(vec"a" .hat"i")hat"i" + (vec"a".hat"j")hat"j" + (vec"a".hat"k")hat"k"` ______ के बराबर है।