Advertisements
Advertisements
Question
यदि `|vec"a"|` = 10, `|vec"b"|` = 2 और `vec"a".vec"b"` = 12, हो तो `|vec"a" xx vec"b"|` का मान है
Options
5
10
14
16
Solution
सही उत्तर 16 है।
व्याख्या:
दिया गया है कि `|vec"a"|` = 10, `|vec"b"|` = 2 और `vec"a".vec"b"` = 12
∴ `vec"a" . vec"b" = |vec"a"||vec"b"| cos theta`
⇒ 12 = `10 * 2 * cos theta`
⇒ `cos theta = 12/20 = 3/5`
∴ `sin theta = sqrt(1 - cos^2theta)`
⇒ `sin theta = sqrt(1 - (3/5)^2`
⇒ `sin theta = sqrt(1 - 9/25)`
⇒ `sin theta = sqrt(16/25)`
⇒ `sin theta = 4/5`
अब `|vec"a" xx vec"b"| = |vec"a"| |vec"b"| sin theta`
= `10 * 2 * 4/5`
= 16
APPEARS IN
RELATED QUESTIONS
सदिशों `vec"a" = 2hat"i" - hat"j" + 2hat"k"` और `vec"b" = -hat"i" + hat"j" + 3hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।
यदि बिंदु P और Q क्रमश: (1, 3, 2) और (-1, 0, 8) है, तो `vec"PQ"`, के विपरीत दिशा में परिमाण 11 का एक सदिश ज्ञात कीजिए।
P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में बाहयत: विभाजित करता है।
सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB
सिद्ध कीजिए कि किसी ∆ABC, में `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, जहाँ a, b, c क्रमश: A, B, C शीर्षों की सम्मुख भुजाओं के परिमाण को निरूपित करते हैं।
प्रारम्भिक बिंदु P (2, - 3, 5) और अंतिम बिंदु Q(3, -4, 7) वाला सदिश है
यदि `|vec"a"| = 8, |vec"b"| = 3` और `|vec"a" xx vec"b"| = 12` है, तो `vec"a"*vec"b"` बराबर है
सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` का सदिश `vec"b" = hat"i" - 2hat"j" + 2hat"k"` के अनुदिश प्रक्षेप बराबर है
यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3) vec"a" - vec"b"` के मात्रक सदिश होने के लिए `vec"a"` और `vec"b"` के बीच क्या कोण होगा?
सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` और `vec"b" = 2hat"j" + hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।
यदि `vec"a" = hat"i" + hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `6vec"b"`
सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।
एक सदिश `vec"r"` तीनों अक्षों से समान कोण पर झुका हुआ है। यदि `vec"r"` का परिमाण `2sqrt3` इकाई है तो `vec"r"` ज्ञात कीजिए।
यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।
यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"` है तो `vec"AB"` का `vec"CD"` अनुदिश प्रक्षेप ज्ञात कीजिए।
सदिशों के प्रयोग से त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए यदि जिसके शीर्ष A (1, 2, 3), B (2, -1, 4) और C (4, 5, -1) है।
यदि `vec"a", vec"b", vec"c"` किसी त्रिभुज के शीर्षों को निर्धारित करते हैं तो, सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल `1/2[vec"b" xx vec"c" + vec"c" xx vec"a" + vec"a" xx vec"b"]` है। इसके प्रयोग से तीन बिंदुओं `vec"a", vec"b", vec"c"` के संरेखी होने के प्रतिबंध का निगमन कीजिए। साथ ही त्रिभुज के तल पर अभिलंब मात्रक सदिश भी ज्ञात कीजिए।
सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण `vec"a"` और `vec"b"` द्वारा व्यक्त हैं, `(|vec"a" xx vec"b"|)/2` है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए जिसके विकर्ण `2hat"i" - hat"j" + hat"k"` और `hat"i" + 3hat"j" - hat"k"` है।
सदिश जिसका प्रारंभिक और अंतिम बिंदु क्रमश: (2, 5, 0) और (-3, 7, 4) है निम्नलिखित है
दो सदिशों `vec"a"` और `vec"b"` के परिमाण क्रमश: `sqrt(3)` और 4 हैं तथा `vec"a" * vec"b" = 2sqrt(3)` है। इनके बीच का कोण है
यदि सदिश `3hat"i" - 6hat"j" + hat"k"` और `2hat"i" - 4hat"j" + lambdahat"k"` समांतर हैं तो λ का मान है
सदिश `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` और `2hat"i" - hat"j" + lambdahat"k"` समतलीय हैं यदि
सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप
यदि `|vec"a"|` = 4 और −3 ≤ λ ≤ 2 है तो `|lambdavec"a"|` का अंतराल है
सदिशों `vec"a" = 2hat"i" + hat"j" + 2hat"k"` और `vec"b" = hat"j" + hat"k"` दोनों ही पर मात्रक लंब सदिशों की संख्या हैं
यदि `vec"a"` और `vec"b"` समचतुर्भुज की संलग्न भुजाएँ हैं तब `vec"a" * vec"b"` = 0 है।