Advertisements
Advertisements
Question
एक सदिश `vec"r"` तीनों अक्षों से समान कोण पर झुका हुआ है। यदि `vec"r"` का परिमाण `2sqrt3` इकाई है तो `vec"r"` ज्ञात कीजिए।
Solution
क्योंकि, सदिश `vec"r"` अक्षों के साथ समान कोण बनाता है, उनकी दिक-कोसाइन समान होनी चाहिए।
∴ l = m = n
हम जानते हैं कि l2 + m2 + n2 = 1
⇒ l2 + l2 + l2 = 1
⇒ 3l2 = 1
⇒ l2 = `1/3`
⇒ l = `+- 1/sqrt(3)`
∴ `hat"r" = +- 1/sqrt(3)hat"i" +- 1/sqrt(3)hat"j" +- 1/sqrt(3)hat"k"`
⇒ `hat"k" = +- 1/sqrt(3) (hat"i" + hat"j" + hat"k")`
हम जानते हैं कि `vec"r" = (hat"r") |vec"r"|`
= `+- 1/sqrt(3) (hat"i" + hat"j" + hat"k") 2sqrt(3)`
= `+- 2(hat"i" + hat"j" + hat"k")`
इसलिए, `vec"r"` का अभीष्ट मान `+- 2(hat"i" + hat"j" + hat"k")` है।
APPEARS IN
RELATED QUESTIONS
सदिशों `vec"a" = 2hat"i" - hat"j" + 2hat"k"` और `vec"b" = -hat"i" + hat"j" + 3hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।
P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में अंत:
P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में बाहयत: विभाजित करता है।
सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB
सदिश `vec"i" - vec"j"` और सदिश `vec"j" - vec"k"` के बीच का कोण है
यदि `|vec"a"|` = 3 और –1 ≤ k ≤ 2, है तो `|"k"vec"a"|` निम्नलिखित में से किस अंतराल में है?
सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।
एक सदिश `vec"r"` का परिमाण 14 है तथा दिक्-अनुपात 2, 3, - 6 हैं। `vec"r"` के दिक्-कोसाइन और'घटक ज्ञात कीजिए जब कि यह दिया है कि x-अक्ष से `vec"r"` न्यून कोण बनता है।
यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।
यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"` है तो `vec"AB"` का `vec"CD"` अनुदिश प्रक्षेप ज्ञात कीजिए।
सिद्ध कीजिए कि किसी त्रिभुज ABC में cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, होता है जहाँ a, b, c क्रमशः शीषों A, B, C, की सम्मुख भुजाओं के परिमाण हैं।
यदि `vec"a", vec"b", vec"c"` किसी त्रिभुज के शीर्षों को निर्धारित करते हैं तो, सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल `1/2[vec"b" xx vec"c" + vec"c" xx vec"a" + vec"a" xx vec"b"]` है। इसके प्रयोग से तीन बिंदुओं `vec"a", vec"b", vec"c"` के संरेखी होने के प्रतिबंध का निगमन कीजिए। साथ ही त्रिभुज के तल पर अभिलंब मात्रक सदिश भी ज्ञात कीजिए।
बिंदु `2vec"a" - 3vec"b"` और `vec"a" + vec"b"` को मिलाने वाले रेखाखंड को 3:1 में विभाजित करने वाले बिंदु का स्थिति सदिश है
सदिश जिसका प्रारंभिक और अंतिम बिंदु क्रमश: (2, 5, 0) और (-3, 7, 4) है निम्नलिखित है
दो सदिशों `vec"a"` और `vec"b"` के परिमाण क्रमश: `sqrt(3)` और 4 हैं तथा `vec"a" * vec"b" = 2sqrt(3)` है। इनके बीच का कोण है
यदि सदिश `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` और `vec"b" = hat"i" + 2hat"j" + 3hat"k"` लॉंबिक (orthogonal) हों तो λ का मान है
सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप
यदि `|vec"a"|` = 4 और −3 ≤ λ ≤ 2 है तो `|lambdavec"a"|` का अंतराल है
सदिश `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` और `vec"b" = -hat"i" - 2hat"k"` एक समांतर चतुर्भुज है। इसके विकर्णों के बीच का न्यूनकोंण ______ है।
यदि `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 और `|vec"a"|` = 4, तो `|vec"b"|` ______ के बराबर है।
यदि `vec"a"` कोई शुन्येतर सदिश है तो `(vec"a" .hat"i")hat"i" + (vec"a".hat"j")hat"j" + (vec"a".hat"k")hat"k"` ______ के बराबर है।
यदि `|vec"a"| = |vec"b"|` तो यह आवश्यक है कि `vec"a" = +- vec"b"` है।
यदि `vec"a"` और `vec"b"` समचतुर्भुज की संलग्न भुजाएँ हैं तब `vec"a" * vec"b"` = 0 है।