English

बिंदु ab2a→-3b→ और aba→+b→ को मिलाने वाले रेखाखंड को 3:1 में विभाजित करने वाले बिंदु का स्थिति सदिश है - Mathematics (गणित)

Advertisements
Advertisements

Question

बिंदु `2vec"a" - 3vec"b"` और `vec"a" + vec"b"` को मिलाने वाले रेखाखंड को 3:1 में विभाजित करने वाले बिंदु का स्थिति सदिश है

Options

  • `(3vec"a" - 2vec"b")/2`

  • `(7vec"a" - 8vec"b")/4`

  • `(3vec"a")/4`

  • `(5vec"a")/4`

MCQ

Solution

सही उत्तर `underline((5vec"a")/4)` है। 

व्याख्या:

दिए गए सदिश `2vec"a" - 3vec"b"` तथा `vec"a" + vec"b"` 3:1 के अनुपात में है। 

∴ अभीष्ट बिंदु c का स्थिति सदिश जो दिए गए सदिशों `vec"a"` तथा `vec"b"`  के जोड़ को विभाजित करता है।

`vec"c" = ("m"_1x_2 + "m"_2x_1)/("m"_1 + "m"_2)`

= `(1 * (2vec"a" - 3vec"b") + 3(vec"a" + vec"b"))/(3 + 1)`

= `(2vec"a" - 3vec"b" + 3vec"a" + 3vec"b")/4`

= `(5vec"a")/4`

= `5/4 vec"a"`

shaalaa.com
सदिश बीजगणित
  Is there an error in this question or solution?
Chapter 10: सदिश बीजगणित - प्रश्नावली [Page 211]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 10 सदिश बीजगणित
प्रश्नावली | Q 20 | Page 211

RELATED QUESTIONS

P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और  `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में अंत: 


सदिशों के प्रयोग द्वारा सिद्ध कीजिए कि cos (A – B) = cosA cosB + sinA sinB


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


प्रारम्भिक बिंदु P (2, - 3, 5) और अंतिम बिंदु Q(3, -4, 7) वाला सदिश है


समांतर चतुर्भुज, का क्षेत्रफल जिसकी संलग्न भुजाएँ  `hat"i" + hat"k"` और `2hat"i" + hat"j"+ hat"k"` है


यदि `|vec"a"| = 8, |vec"b"| = 3` और `|vec"a" xx vec"b"| = 12` है, तो `vec"a"*vec"b"` बराबर है


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` का सदिश `vec"b" = hat"i" - 2hat"j" + 2hat"k"` के अनुदिश प्रक्षेप बराबर है


यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3)  vec"a" - vec"b"` के मात्रक सदिश होने के लिए  `vec"a"` और `vec"b"` के बीच क्या कोण होगा?


यदि  `vec"a" = hat"i" + hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `6vec"b"`


`vec"PQ"` की दिशा में मात्रक संदिश ज्ञात कीजिए जहाँ P और Q के निर्देशांक क्रमश: (5, 0, 8) और (3, 3, 2) हैं।


यदि `vec"a"` और `vec"b"` बिंदु A और B के क्रमश: स्थिति सदिश हैं तथा बढ़ाई गई BA में एक बिंदु C इस प्रकार है कि BC = 1.5 BA तो C का स्थिति सदिश ज्ञात कीजिए।


सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।


एक सदिश `vec"r"` का परिमाण 14 है तथा दिक्‌-अनुपात 2, 3, - 6 हैं। `vec"r"` के दिक्‌-कोसाइन और'घटक ज्ञात कीजिए जब कि यह दिया है कि x-अक्ष से `vec"r"` न्यून कोण बनता है।


सदिशों के प्रयोग से त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए यदि जिसके शीर्ष A (1, 2, 3), B (2, -1, 4) और C (4, 5, -1) है।


सदिशों के प्रयोग से सिद्ध कीजिए कि एक ही आधार और एक ही समांतर रेखाओं के मध्य स्थित समांतर चतुर्भुजों के क्षेत्रफल बराबर होते हैं।


सदिश `hat"i" - 2hat"j" + 2hat"k"` की दिशा में परिमाण 9 वाला सदिश है


दो सदिशों  `vec"a"` और `vec"b"` के परिमाण क्रमश: `sqrt(3)`  और 4 हैं तथा `vec"a" * vec"b" = 2sqrt(3)` है। इनके बीच का कोण है


यदि सदिश `3hat"i" - 6hat"j" + hat"k"` और `2hat"i" - 4hat"j" + lambdahat"k"` समांतर हैं तो λ का मान है


मूल बिंदु से A और B बिंदुओं के सदिश क्रमश: `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, हों तो त्रिभुज OAB का क्षेत्रफल है


सदिश `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` और `2hat"i" - hat"j" + lambdahat"k"` समतलीय हैं यदि


 सदिश  `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` और `vec"b" = -hat"i" - 2hat"k"` एक समांतर चतुर्भुज है। इसके विकर्णों के बीच का न्यूनकोंण ______ है।


यदि `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 और `|vec"a"|` = 4, तो `|vec"b"|` ______ के बराबर है।


यदि `|vec"a"| = |vec"b"|` तो यह आवश्यक है कि  `vec"a" = +- vec"b"` है।


किसी बिंदु P का स्थिति सदिश का प्रारंभिक बिंदु मूल बिंदु होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×