English

सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों। - Mathematics (गणित)

Advertisements
Advertisements

Question

सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।

Sum

Solution

मान लीजिए दिए गए बिंदु A(k, 10, 3), B(1, 1, 3) और C(3, 5, 3) हैं।

`vec"AB" = (1 - "k")hat"i" + (-1 + 10)hat"j" + (3 - 3)hat"k"`

`vec"AB" = (1 - "k")hat"i" + 9hat"j" + 0hat"k"`

∴ `|vec"AB"| = sqrt((1 - "k")^2 + (9)^2)`

= `sqrt((1 - "k")^2 + 81)`

`vec"BC" = (3 - 1)hat"i" + (5 + 1)hat"j" + (3 - 3)hat"k"`

= `2hat"i" + 6hat"j" + 0hat"k"`

∴ `|vec"BC"| = sqrt((2)^2 + (6)^2)`

= `sqrt(4 + 36)`

= `sqrt(40)`

= `2sqrt(10)`

`vec"AC" = (3 - "k")hat"i" + (5 + 10)hat"j" + (3 - 3)hat"k"`

= `(3 - "k")hat"i" + 15hat"j" + 0hat"k"`

∴ `|vec"AC"| = sqrt((3 - "k")^2 + (15)^2)`

= `sqrt((3 - "k")^2 + 225)`

यदि A, B और C संरेख हैं, तो

`|vec"AB"| + |vec"BC"| = |vec"AC"|`

`sqrt((1 - "k")^2 + 81) + sqrt(40) = sqrt((3 - "k")^2 + 225)`

हम जानते हैं कि, दोनों पक्षों का वर्ग करने पर

`[sqrt((1 - "k")^2 + 81) + sqrt(40)]^2 = [sqrt((3 - "k")^2 + 225)]^2`

⇒ `(1 - "k")^2 + 81 + 40 + 2sqrt(40) sqrt((1 - "k")^2 + 81) = (3 - "k")^2 + 225`

⇒ `1 + "k"^2 - 2"k" + 121 + 2sqrt(40) sqrt(1 + "k"^2 - 2"k" + 81) =9 + "k"^2 - 6"k" + 225`

⇒ `122 - 2"k" + 2sqrt(40) sqrt("k"^2 - 2"k" + 82) = 234 - 6"k"`

2 से भाग देने पर हमें प्राप्त होता है

⇒ `61 - "k" + sqrt(40) sqrt("k"^2 - 2"k" + 82) = 117 - 3"k"`

⇒ `sqrt(40) sqrt("k"^2 - 2"k" + 82) = 117 - 61 - 3"k" + "k"`

⇒ `sqrt(40) sqrt("k"^2 - 2"k" + 82) = 56 - 2"k"`

⇒ `sqrt(10) sqrt("k"^2 - 2"k" + 82) = 28 - "k"`  ...(2 से भाग देना)

दोनों पक्षों का वर्ग करने पर हमें प्राप्त होता है

⇒ 10(k2 – 2k + 82) = 784 + k2 – 56k

⇒ 10k2 – 20k + 820 = 784 + k2 – 56k

⇒ 10k2 – k2 – 20k + 56k + 820 – 784 = 0

⇒ 9k2 + 36k + 36 = 0

⇒ k2 + 4k + 4 = 0

⇒ (k + 2)2 = 0

⇒ k = – 2

⇒ k = – 2

इसलिए, अभीष्ट मान k = – 2 है।

shaalaa.com
सदिश बीजगणित
  Is there an error in this question or solution?
Chapter 10: सदिश बीजगणित - प्रश्नावली [Page 209]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 10 सदिश बीजगणित
प्रश्नावली | Q 5 | Page 209

RELATED QUESTIONS

P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और  `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में अंत: 


P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में बाहयत: विभाजित करता है।


परिमाण 3`sqrt2` का एक सदिश `vec"r"` ज्ञात कीजिए जो y और z-अक्षों से क्रमशः कोण `pi/4` और `pi/2` बनाता है।


सिद्ध कीजिए कि किसी ∆ABC, में `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, जहाँ a, b, c क्रमश: A, B, C शीर्षों की सम्मुख भुजाओं के परिमाण को निरूपित करते हैं।


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


प्रारम्भिक बिंदु P (2, - 3, 5) और अंतिम बिंदु Q(3, -4, 7) वाला सदिश है


 सदिश `vec"i" - vec"j"` और सदिश `vec"j" - vec"k"` के बीच का कोण है


x का वह मान जिसके लिए सदिश `2hat"i" - hat"j" + 2hat"k"` और सदिश `3hat"i" - lambdahat"j" + hat"k"` लंबवत है तो λ बराबर है


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` और `vec"b" = 2hat"j" + hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


यदि  `vec"a" = hat"i" + hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `6vec"b"`


`vec"PQ"` की दिशा में मात्रक संदिश ज्ञात कीजिए जहाँ P और Q के निर्देशांक क्रमश: (5, 0, 8) और (3, 3, 2) हैं।


यदि `vec"a"` और `vec"b"` बिंदु A और B के क्रमश: स्थिति सदिश हैं तथा बढ़ाई गई BA में एक बिंदु C इस प्रकार है कि BC = 1.5 BA तो C का स्थिति सदिश ज्ञात कीजिए।


एक सदिश `vec"r"` तीनों अक्षों से समान कोण पर झुका हुआ है। यदि `vec"r"` का परिमाण `2sqrt3` इकाई है तो `vec"r"` ज्ञात कीजिए।


परिमाण 6 का एक सदिश ज्ञात कीजिए जो दोनों ही सदिशों  `2hat"i" - hat"j" + 2hat"k"` और `4hat"i" - hat"j" + 3hat"k"` पर लंब है।


सदिशों के प्रयोग से त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए यदि जिसके शीर्ष A (1, 2, 3), B (2, -1, 4) और C (4, 5, -1) है।


सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण `vec"a"` और `vec"b"` द्वारा व्यक्त हैं, `(|vec"a" xx vec"b"|)/2` है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए जिसके विकर्ण  `2hat"i" - hat"j" + hat"k"` और `hat"i" + 3hat"j" - hat"k"` है।


यदि  `vec"a" = hat"i" + hat"j" + hat"k"` और `vec"b" = hat"j" - hat"k"` तो सदिश  `vec"c"` ज्ञात कीजिए इस प्रकार कि  `vec"a" xx vec"c" = vec"b"` और `vec"a"*vec"c"` = 3.


सदिश `hat"i" - 2hat"j" + 2hat"k"` की दिशा में परिमाण 9 वाला सदिश है


सदिश जिसका प्रारंभिक और अंतिम बिंदु क्रमश: (2, 5, 0) और (-3, 7, 4) है निम्नलिखित है


दो सदिशों  `vec"a"` और `vec"b"` के परिमाण क्रमश: `sqrt(3)`  और 4 हैं तथा `vec"a" * vec"b" = 2sqrt(3)` है। इनके बीच का कोण है


किसी भी सदिश `vec"a"` के लिए `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` का मान बराबर है


यदि `|vec"a"|` = 10, `|vec"b"|` = 2 और `vec"a".vec"b"` = 12, हो तो `|vec"a" xx vec"b"|` का मान है


सदिश `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` और `2hat"i" - hat"j" + lambdahat"k"` समतलीय हैं यदि


सदिश `vec"a" + vec"b"` असंरेखी सदिशों `vec"a"` और `vec"b"` के बीच के कोण को समद्विभाजित करता है यदि ______


यदि k के मानों के लिए  `|"k"vec"a"| < |vec"a"|` और `"k"vec"a" + 1/2   vec"a"` सदिश `vec"a"` के समांतर है, तो k के मान ______ हैं। 


यदि `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 और `|vec"a"|` = 4, तो `|vec"b"|` ______ के बराबर है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×