English

यदि abca→+b→+c→ = 0, तो सिद्ध कीजिए कि abbccaa→×b→=b→×c→=c→×a→ इस परिणाम का ज्यामितीय विमोचन कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।

Sum

Solution

दिया गया है कि `vec"a" + vec"b" + vec"c"` = 0

तो, `vec"a" xx (vec"a" + vec"b" + vec"c") = vec"a" xx 0`

⇒ `vec"a" xx vec"a" + vec"a" xx vec"b" + vec"a" xx vec"c"` = 0

⇒ `vec"0" + vec"a" xx vec"b" + vec"a" xx vec"c"` = 0  ....`(vec"a" xx vec"a" = 0)`

⇒ `vec"a" xx vec"b" - vec"c" xx vec"a"` = 0  ....`(vec"a" xx vec"c" = -vec"c" xx vec"a")`

⇒ `vec"a" xx vec"b" = vec"c" xx vec"a"`  .....(i)

अब `vec"a" + vec"b" + vec"c"` = 0

⇒ `vec"b" xx (vec"a" + vec"b" + vec"c") = vec"b" xx 0`

⇒ `vec"b" xx vec"a" + vec"b" xx vec"b" xx vec"c"` = 0

⇒ `vec"b" xx vec"a" + vec0 + vec"b" xx vec"c"` = 0  ....`("क्योंकि"  vec"b" xx vec"b" = 0)`

⇒ `-(vec"a" xx "b") + vec"b" xx vec"c"` = 0

∴ `vec"b" xx vec"c" = vec"a" xx vec"b"`  ....(ii)

समीकरण (i) और (ii) से हम प्राप्त करते हैं

`vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"`.

इसलिए साबित हुआ।

ज्यामितीय व्याख्या

आकृति के अनुसार, हम जानते हैं कि

समांतर चतुर्भुज ABCD का क्षेत्रफल है। 

⇒ `|vec"a" xx vec"b"| = |vec"a"||vec"b"| sin theta`

क्योंकि, एक ही आधार पर और एक ही समान्तर रेखाओं के बीच स्थित समांतर चतुर्भुज क्षेत्रफल में बराबर होते हैं।

∴ `|vec"a" xx vec"b"| = |vec"b" xx vec"c"| = |vec"c" xx vec"a"|`

⇒ `vec"a" xx vec"b" xx vec"c" = vec"c" xx vec"a"`.

shaalaa.com
सदिश बीजगणित
  Is there an error in this question or solution?
Chapter 10: सदिश बीजगणित - प्रश्नावली [Page 210]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 10 सदिश बीजगणित
प्रश्नावली | Q 10 | Page 210

RELATED QUESTIONS

सदिशों `vec"a" = 2hat"i" - hat"j" + 2hat"k"` और `vec"b" = -hat"i" + hat"j" + 3hat"k"`  के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


यदि बिंदु (-1, -1, 2), (2, m, 5) और (3, 11, 6) सरेखी, हैं तो m का मान ज्ञात कीजिए।


परिमाण 3`sqrt2` का एक सदिश `vec"r"` ज्ञात कीजिए जो y और z-अक्षों से क्रमशः कोण `pi/4` और `pi/2` बनाता है।


सिद्ध कीजिए कि किसी ∆ABC, में `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, जहाँ a, b, c क्रमश: A, B, C शीर्षों की सम्मुख भुजाओं के परिमाण को निरूपित करते हैं।


सदिश `6vec"i" + 2vec"j" + 3vec"k"` का परिमाण है


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


यदि `|vec"a"| = 8, |vec"b"| = 3` और `|vec"a" xx vec"b"| = 12` है, तो `vec"a"*vec"b"` बराबर है


यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3)  vec"a" - vec"b"` के मात्रक सदिश होने के लिए  `vec"a"` और `vec"b"` के बीच क्या कोण होगा?


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` और `vec"b" = 2hat"j" + hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


यदि `vec"a" = hat"i" + hat"j" + 2hat"k"` और `hat"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `2vec"a" - vec"b"`


सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।


एक सदिश `vec"r"` तीनों अक्षों से समान कोण पर झुका हुआ है। यदि `vec"r"` का परिमाण `2sqrt3` इकाई है तो `vec"r"` ज्ञात कीजिए।


परिमाण 6 का एक सदिश ज्ञात कीजिए जो दोनों ही सदिशों  `2hat"i" - hat"j" + 2hat"k"` और `4hat"i" - hat"j" + 3hat"k"` पर लंब है।


सदिश दर `vec"a" = 3hat"i" + hat"j" + 2hat"k"` तथा सदिश `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"` के बीच का sine ज्ञात कीजिए।


सदिशों के प्रयोग से त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए यदि जिसके शीर्ष A (1, 2, 3), B (2, -1, 4) और C (4, 5, -1) है।


सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण `vec"a"` और `vec"b"` द्वारा व्यक्त हैं, `(|vec"a" xx vec"b"|)/2` है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए जिसके विकर्ण  `2hat"i" - hat"j" + hat"k"` और `hat"i" + 3hat"j" - hat"k"` है।


सदिश `hat"i" - 2hat"j" + 2hat"k"` की दिशा में परिमाण 9 वाला सदिश है


दो सदिशों  `vec"a"` और `vec"b"` के परिमाण क्रमश: `sqrt(3)`  और 4 हैं तथा `vec"a" * vec"b" = 2sqrt(3)` है। इनके बीच का कोण है


यदि सदिश `3hat"i" - 6hat"j" + hat"k"` और `2hat"i" - 4hat"j" + lambdahat"k"` समांतर हैं तो λ का मान है


मूल बिंदु से A और B बिंदुओं के सदिश क्रमश: `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, हों तो त्रिभुज OAB का क्षेत्रफल है


यदि `|vec"a"|` = 10, `|vec"b"|` = 2 और `vec"a".vec"b"` = 12, हो तो `|vec"a" xx vec"b"|` का मान है


सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप


सदिशों `vec"a" = 2hat"i" + hat"j" + 2hat"k"` और `vec"b" = hat"j" + hat"k"` दोनों ही पर मात्रक लंब सदिशों की संख्या हैं


सदिश `vec"a" + vec"b"` असंरेखी सदिशों `vec"a"` और `vec"b"` के बीच के कोण को समद्विभाजित करता है यदि ______


यदि k के मानों के लिए  `|"k"vec"a"| < |vec"a"|` और `"k"vec"a" + 1/2   vec"a"` सदिश `vec"a"` के समांतर है, तो k के मान ______ हैं। 


व्यंजक `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` का मान ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×