English

परिमाण 103 वाले उन सभी सदिशों को ज्ञात कीजिए जो ijki^+2j^+k^ और ijk-i^+3j^+4k^ को अंतर्विष्ट करने वाले तल पर लंब हो। - Mathematics (गणित)

Advertisements
Advertisements

Question

परिमाण 10`sqrt3` वाले उन सभी सदिशों को ज्ञात कीजिए जो  `hat"i" + 2hat"j" + hat"k"` और `-hat"i" + 3hat"j" + 4hat"k"` को अंतर्विष्ट करने वाले तल पर लंब हो।

Sum

Solution

मान लीजिए कि  `vec"a" = hat"i" + 2hat"j" + hat"k"` और `vec"b" = -hat"i" + 3hat"j" + 4hat"k"`

तब `vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(1, 2, 1),(-1, 3, 4)|`

= `hat"i"(8 - 3) - hat"j"(4 + 1) + hat"k"(3 + 2)`

= `5hat"i" - 5hat"j" + 5hat"k"`

⇒ `|vec"a" xx vec"b"| = sqrt((5)^2 + (-5)^2 + (5)^2)`

= `sqrt(3(5)^2)`

= `5sqrt(3)`

इसलिए `vec"a"` और `vec"b"` के तल के लंबवत मात्रक सदिश निम्नलिखित है

`(vec"a" xx vec"b")/|vec"a" xx vec"b"| = (5hat"i" - 5hat"j" + 5hat"k")/(5sqrt(3)`

अतः `vec"a"` और `vec"b"` के तल के लंबवत `10sqrt(3)` परिमाण वाला सदिश  `+-10sqrt(3) ((5hat"i" - 5hat"j" + 5hat"k")/(5sqrt(3)))`

अर्थात्‌ `+- 10(hat"i" - hat"j" + hat"k")` हैं।

shaalaa.com
सदिश बीजगणित
  Is there an error in this question or solution?
Chapter 10: सदिश बीजगणित - हल किए हुए उदाहरण [Page 204]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 10 सदिश बीजगणित
हल किए हुए उदाहरण | Q 7 | Page 204

RELATED QUESTIONS

सदिशों `vec"a" = 2hat"i" - hat"j" + 2hat"k"` और `vec"b" = -hat"i" + hat"j" + 3hat"k"`  के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


यदि बिंदु P और Q क्रमश: (1, 3, 2) और (-1, 0, 8) है, तो `vec"PQ"`, के विपरीत दिशा में परिमाण 11 का एक सदिश ज्ञात कीजिए।


P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और  `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में अंत: 


यदि बिंदु (-1, -1, 2), (2, m, 5) और (3, 11, 6) सरेखी, हैं तो m का मान ज्ञात कीजिए।


यदि `vec"a" = 2hat"i" - hat"j" + hat"k", vec"b" = hat"i" + hat"j" - 2hat"k"`  और `vec"c" = hat"i" + 3hat"j" - hat"k"`, का वह मान ज्ञात कीजिए जिससे `vec"a"` सदिश `lambdavec"b" + vec"c"` पर लंब हो।


उस बिंदु का स्थिति सदिश, जो दो बिंदुओं, जिनके स्थिति सदिश क्रमश: `vec"a" + vec"b"` और 2`vec"a" + vec"b"` हैं, को 1:2 के अनुपात में विभाजित करता है,


यदि `|vec"a"| = 8, |vec"b"| = 3` और `|vec"a" xx vec"b"| = 12` है, तो `vec"a"*vec"b"` बराबर है


यदि `vec"a"` और `vec"b"` मात्रक सदिश हैं तो `sqrt(3)  vec"a" - vec"b"` के मात्रक सदिश होने के लिए  `vec"a"` और `vec"b"` के बीच क्या कोण होगा?


एक मात्रक सदिश जो सदिशों `hat"i" - hat"j"` और `hat"i" + hat"j"` दोनों के लंबवत है तथा एक दक्षिणावर्ती पद्धति को निर्मित करने वाला सदिश है।


सदिश `vec"a" = 2hat"i" - hat"j" + hat"k"` और `vec"b" = 2hat"j" + hat"k"` के योग के अनुदिश मात्रक सदिश ज्ञात कीजिए।


यदि `vec"a" = hat"i" + hat"j" + 2hat"k"` और `hat"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `2vec"a" - vec"b"`


सदिशों के प्रयोग से k का मान ज्ञात कीजिए ताकि बिंदु (k, -10, 3), (1, -1, 3) और(3, 5, 3) संरेखी हों।


सदिशों `2hat"i" - hat"j" + hat"k"` और `3hat"i" + 4hat"j" - hat"k"` के बीच का कोण ज्ञात कीजिए।


यदि `vec"a" + vec"b" + vec"c"` = 0, तो सिद्ध कीजिए कि `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"` इस परिणाम का ज्यामितीय विमोचन कीजिए।


सदिश दर `vec"a" = 3hat"i" + hat"j" + 2hat"k"` तथा सदिश `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"` के बीच का sine ज्ञात कीजिए।


यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"` है तो `vec"AB"` का `vec"CD"`  अनुदिश प्रक्षेप ज्ञात कीजिए।


सिद्ध कीजिए कि किसी त्रिभुज ABC में cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, होता है जहाँ a, b, c क्रमशः शीषों A, B, C, की सम्मुख भुजाओं के परिमाण हैं।


यदि `vec"a", vec"b", vec"c"` किसी त्रिभुज के शीर्षों को निर्धारित करते हैं तो, सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल `1/2[vec"b" xx vec"c" + vec"c" xx vec"a" + vec"a" xx vec"b"]` है। इसके प्रयोग से तीन बिंदुओं `vec"a", vec"b", vec"c"` के संरेखी होने के प्रतिबंध का निगमन कीजिए। साथ ही त्रिभुज के तल पर अभिलंब मात्रक सदिश भी ज्ञात कीजिए।


सदिश `hat"i" - 2hat"j" + 2hat"k"` की दिशा में परिमाण 9 वाला सदिश है


यदि `|vec"a"|` = 10, `|vec"b"|` = 2 और `vec"a".vec"b"` = 12, हो तो `|vec"a" xx vec"b"|` का मान है


सदिश `vec"a"` का सदिश `vec"b"` पर प्रक्षेप


यदि तीन सदिश `vec"a", vec"b", vec"c"` इस प्रकार हैं कि `vec"a" + vec"b" + vec"a" = vec0` और `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, है, तो `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"`  का मान


सदिश `vec"a" + vec"b"` असंरेखी सदिशों `vec"a"` और `vec"b"` के बीच के कोण को समद्विभाजित करता है यदि ______


यदि `vec"a"` कोई शुन्येतर सदिश है तो `(vec"a" .hat"i")hat"i" + (vec"a".hat"j")hat"j" + (vec"a".hat"k")hat"k"` ______ के बराबर है।


किसी बिंदु P का स्थिति सदिश का प्रारंभिक बिंदु मूल बिंदु होता है।


यदि `|vec"a" + vec"b"| = |vec"a" - vec"b"|` है तब सदिश `vec"a"` और `vec"b"` लांबिक (orthogonol) हैं।


यदि `vec"a"` और `vec"b"` समचतुर्भुज की संलग्न भुजाएँ हैं तब `vec"a" * vec"b"` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×