हिंदी

दो समरूप त्रिभुजों की भुजाएँ 4 : 9 के अनुपात में हैं। इन त्रिभुजों के क्षेत्रफलों का अनुपात है: _____ - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दो समरूप त्रिभुजों की भुजाएँ 4 : 9 के अनुपात में हैं। इन त्रिभुजों के क्षेत्रफलों का अनुपात है: _____

विकल्प

  • 2 : 3

  • 4 : 9

  • 81 : 16

  • 16 : 81

MCQ
रिक्त स्थान भरें

उत्तर

दो समरूप त्रिभुजों की भुजाएँ 4 : 9 के अनुपात में हैं। इन त्रिभुजों के क्षेत्रफलों का अनुपात 16 : 81 है।

स्पष्टीकरण:

सही विकल्प 16 : 81 है, क्योंकि समरूप त्रिभुजों के क्षेत्रफलों का अनुपात उनकी संगत भुजाओं के अनुपात का वर्ग होता है। अत: 4 : 9 का वर्ग अनुपात 16 : 81 है।

shaalaa.com
समरूप त्रिभुजों के क्षेत्रफल
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: त्रिभुज - प्रश्नावली 6.4 [पृष्ठ १५८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 6 त्रिभुज
प्रश्नावली 6.4 | Q 9. | पृष्ठ १५८

संबंधित प्रश्न

मान लीजिए ∆ABC ∼ ∆DEF है और इनके क्षेत्रफल क्रमश: 64 cm2 और 121 cm2 हैं। यदि EF = 15.4 cm हो, तो BC ज्ञात कीजिए।


एक समलंब ABCD जिसमें AB || DC है, के विकर्ण परस्पर बिंदु O पर प्रतिच्छेद करते हैं। यदि AB = 2CD हो तो त्रिभुजों AOB और COD के क्षेत्रफलों का अनुपात ज्ञात कीजिए।


आकृति में एक ही आधार BC पर दो त्रिभुज ABC और DBC बने हुए हैं। यदि AD, BC को O पर प्रतिच्छेद करे, तो दर्शाइए कि `("ar"("ABC"))/("ar"("DBC")) = "AO"/"DO"` हैं।

 


यदि दो समरूप त्रिभुजों के क्षेत्रफल बराबर हों तो सिद्ध कीजिए कि वे त्रिभुज सर्वांगसम होते हैं।


एक त्रिभुज ABC की भुजाओं AB, BC और CA के मध्य-बिंदु क्रमश: D, E और F हैं। ∆DEF और ∆ABC के क्षेत्रफलों का अनुपात ज्ञात कीजिए।


ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D भुजा BC का मध्य-बिंदु है। त्रिभुजों ABC और BDE के क्षेत्रफलों का अनुपात है: ______


सिद्ध कीजिए कि एक वर्ग की किसी भुजा पर बनाए गए समबाहु त्रिभुज का क्षेत्रफल उसी वर्ग के एक विकर्ण पर बनाए गए समबाहु त्रिभुज के क्षेत्रफल का आधा होता है।


सिद्ध कीजिए कि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात इनकी संगत माध्यिकाओं के अनुपात का वर्ग होता है।


PQR एक समकोण त्रिभुज है जिसका कोण P समकोण है तथा QR पर बिंदु M इस प्रकार स्थित है कि PM ⊥ QR है। दर्शाइए कि PM² = QM.MR है।


आकृति में D त्रिभुज ABC के कर्ण AC पर स्थित एक बिंदु है जबकि BD ⊥ AC तथा DM ⊥ BC और DN ⊥ AB है। सिद्ध कीजिए कि

(i) DM2 = DN.MC
(ii) DN2 = DM.AN

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×