हिंदी

Draw a neat Labelled diagram of a suspended coil type moving coil galvanometer. The initial pressure and volume of a gas enclosed in a cylinder are 2 × 105 N/m2 and 6 × 10-3 m3 respectively. - Physics

Advertisements
Advertisements

प्रश्न

The initial pressure and volume of a gas enclosed in a cylinder are 2 × 105 N/m2 and 6 × 10-3 m3 respectively. If the work done in compressing the gas at constant pressure is 150 J. find the final volume of the gas.

संख्यात्मक

उत्तर

Given data,

ρ = 2 × 105 N/m

Vi = 6 × 10-3

W = - 150 J

Vf = ?

W = P(Vf - Vi)

Vf = Vi + `"W"/"P"`

`= 6 xx 10^-3 + ((- 150)/(2 xx 10^5))`

`= 6 xx 10^-3 + (- 75 xx 10^-5)`

`= 6 xx 10^-3 - 0.75 xx 10^-3`

`"V"_"f" = 5.25 xx 10^-3 "m"^3`

Flnal volume of the gas is 5.25 × 10-3 m3.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

संबंधित प्रश्न

Two very small identical circular loops, (1) and (2), carrying equal currents I are placed vertically (with respect to the plane of the paper) with their geometrical axes perpendicular to each other as shown in the figure. Find the magnitude and direction of the net magnetic field produced at the point O.


Will a current loop placed in a magnetic field always experience a zero force?


Is it possible for a current loop to stay without rotating in a uniform magnetic field? If yes, what should be the orientation of the loop?


A rectangular wire-loop of width a is suspended from the insulated pan of a spring balance, as shown in the figure. A current exists in the anti-clockwise direction in the loop. A magnetic field B exists in the lower region. Find the change in the tension of the spring if the current in the loop is reversed.


A current loop of arbitrary shape lies in a uniform magnetic field B. Show that the net magnetic force acting on the loop is zero.


The figure shows a circular wire loop of radius a and carrying a current i, which is placed in a perpendicular magnetic field B. (a) Consider a small part dl of the wire. Find the force on this part of the wire exerted by the magnetic field. (b) Find the force of compression in the wire.


A rectangular loop of sides 20 cm and 10 cm carries a current of 5.0 A. A uniform magnetic field of magnitude  0.20 T exists parallel to the longer side of the loop. (a) What is the force acting on the loop? (b) What is the torque acting on the loop?


A circular loop of one turn carries a current of 5.00 A. If the magnetic field B at the centre is 0.200 mT, find the radius of the loop.


A Rectangular coil of 10 turns, each of area 0.05 m2, is suspended freely in a uniform magnetic field of induction 0.01 T. A current of 30 µA is passed through it.

(i) What is the magnetic moment of the coil?

(ii) What is the maximum torque experienced by the coil?


Derive an expression for the net torque on a rectangular current carrying loop placed in a uniform magnetic field with its rotational axis perpendicular to the field.


Derive the expression for the torque on a current-carrying coil in a magnetic field.


A rectangular coil of length 0.12 m and width 0.1 m having 100 turns of wire is suspended vertically in a uniform magnetic field of strength 0.4 Wb/m2. The coil carries a current of 2.5 A. If the plane of the coil is inclined at an angle of 30° with the direction of the field, the torque required to keep the coil in stable equilibrium will be ____________.


Torque acting on a rectangular coil carrying current 'l' situated parallel to magnetic field of induction 'B', having number of turns 'n' and area 'A' is ______.


A rectangular coil has 200 turns each of area 50 cm2 . It is capable of rotation about an axis joining the mid points of two opposite sides. When a current of 10 A is passed through it while its plane is at right angles to a uniform magnetic field, it experiences a torque of 5 Nm. The magnetic field will be ____________.


The sensitivity of a milliammeter of range 0 to 50 mA is x `"div"/"mA"`. If it is converted into an ammeter of range 500 mA by using a suitable shunt then the sensitivity will be ________.


Two galvanometers 'G1' and 'G2' require 2 mA and 3 mA respectively to produce the same deflection. Then _______.


If number of turns in moving coil galvanometer becomes half, then the deflection for the same current will become ____________.


The current flowing through moving coil galvanometer is 20% of the current to be measured. The resistance of moving coil galvanometer is 48 `Omega`, then shunt required is ____________.


An ammeter is obtained by shunting 'n' `Omega` galvanometer with 'n' `Omega` resistance. The additional shunt required to be connected across it to double the range is ____________.


A circular coil of 20 turns and radius 10 cm is placed in a uniform magnetic field of 0.10 T normal to the plane of the coil. If the current in the coil is 5.0 A, what is the

(a) total torque on the coil,

(b) total force on the coil,

(c) average force on each electron in the coil due to the magnetic field?

(The coil is made of copper wire of cross-sectional area 10–5 m2, and the free electron density in copper is given to be about 1029 m3.)


When the plane of the coil is parallel to the field, torque will be ______


A circular coil having N turns and radius r carries a current I. It is held in the XZ plane in a magnetic field `Bhati`. The torque on the coil due to the magnetic field is ______.


A current of 10 A is flowing in a wire of length 1.5 m. A force of 15 N acts on it when it is placed in a uniform magnetic field of 2 T. The angle between the magnetic field and the direction of the current is ______.


Equal current i flows in two segments of a circular loop in the direction shown in figure. Radius of the loop is r. The magnitude of magnetic field induction at the centre of the loop is ______.


A rectangular coil of 10 turns, each of area 0.05 m2, is suspended freely in a radial magnetic field of 0.01 T. If the torsional constant of the suspension fibre is 5 × 10−9 N·m per degree, find the angle through which the coil rotates when a current of 30 μA is passed through it.


Write the formula for torque acting on rotating current carrying coil in terms of magnetic dipole moment, in vector form.


A circular coil having N turns of radius R carrying a current I is used to produce a magnetic field B at its centre O.

If this coil is opened and rewound such that the radius of the newly formed coil is 2R, carrying the same current I, what will be the magnetic field at the centre O?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×