हिंदी

एक वृत्ताकार पार्क के अनुदिश बाहर की ओर 21 m चौड़ी एक सड़क है। यदि पार्क की त्रिज्या 105 m है, तो सड़क का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक वृत्ताकार पार्क के अनुदिश बाहर की ओर 21 m चौड़ी एक सड़क है। यदि पार्क की त्रिज्या 105 m है, तो सड़क का क्षेत्रफल ज्ञात कीजिए।

योग

उत्तर

वृत्ताकार सड़क और पार्क संकेंद्रित वृत्त हैं।

पार्क की त्रिज्या = r1 = 105 m

सड़क की चौड़ाई = 21 m 

वृत्ताकार सड़क और पार्क की त्रिज्या = r2

= 105 m + 21 m

= 126 m

तो, सड़क का क्षेत्रफल = पार्क का क्षेत्रफल और सड़क – पार्क का क्षेत्रफल

= `π"r"_2^2 - π"r"_1^2`

= `π["r"_2^2 - "r"_1^2]`

= `22/7 [(126)^2 - (105)^2]`

= `22/7 [126 - 105][126 + 105]`

= `22/7 xx 21 xx 231`

= 22 × 3 × 231

= 66 × 231

= 15246 cm2

∴ सड़क का क्षेत्रफल = 15246 cm2

shaalaa.com
त्रिज्यखंड और वृत्तखंड के क्षेत्रफल
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: वृत्तों से संबंधित क्षेत्रफल - प्रश्नावली 11.3 [पृष्ठ १३०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 11 वृत्तों से संबंधित क्षेत्रफल
प्रश्नावली 11.3 | Q 14. | पृष्ठ १३०

संबंधित प्रश्न

10 सेमी त्रिज्या वाले एक वृत्त की कोई जीवा केंद्र पर एक समकोण अंतरित करती है। निम्नलिखित के क्षेत्रफल ज्ञात कीजिए:

संगत लघु वृत्तखंड [प्रयोग कीजिए π = 3.14]


आकृति में, व्यास d वाले एक वृत्त के अंतर्गत एक वर्ग खींचा गया है तथा एक अन्य वर्ग इसी वृत्त के परिगत है। क्या बाहरी वर्ग का क्षेत्रफल आंतरिक वर्ग के क्षेत्रफल का चार गुना है? अपने उत्तर का कारण दीजिए। 


s मीटर की दूरी चलने के लिए, त्रिज्या r मीटर वाला एक वृत्ताकार पहिया `s/(2πr)` चक्कर लगाता है। क्या यह कथन सत्य है? क्यों?


आकृति में, AB वृत का व्यास है, AC = 6 cm और BC = 8 cm है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए (π = 3.14 का प्रयोग कीजिए)।


एक वृत्ताकार तालाब का व्यास 17.5 m है। इसके अनुदिश बाहर की ओर 2 m चौड़ा एक पथ बना हुआ है। 25 रु प्रति वर्ग मीटर की दर से इस पथ के निर्माण की लागत ज्ञात कीजिए।

किसी धनुर्विद्या (या तीरंदाजी) लक्ष्य के तीन क्षेत्र हैं, जो आकृति में दर्शाए अनुसार तीन संकेंद्रीय वृत्तों से बने हैं। यदि इन संकेंद्रीय वृत्तों के व्यास 1 : 2 : 3 के अनुपात में हैं, तो इन तीनों क्षेत्रों के क्षेत्रफलों का अनुपात ज्ञात कीजिए।


त्रिज्याओं 7 cm और 21 cm वाले दो वृत्तों के दो त्रिज्यखंडों के केंद्रीय कोण क्रमशः 120और 40हैं। इन दोनों त्रिज्यखंडों के क्षेत्रफल तथा साथ ही संगत चापों की लंबाई ज्ञात कीजिए। आप क्या देखते हैं?


10 सेमी त्रिज्या वाले एक वृत्त की कोई जीवा केंद्र पर एक समकोण अंतरित करती है। निम्नलिखित के क्षेत्रफल ज्ञात कीजिए:

संगत दीर्घ त्रिज्यखंड [प्रयोग कीजिए = 3.14]


त्रिज्या 21 cm वाले वृत्त का एक चाप केंद्र पर 60° का कोण अंतरित करता है। ज्ञात कीजिए।

चाप द्वारा बनाए गए त्रिज्यखंड का क्षेत्रफल [प्रयोग कीजिए =`22/7`]


त्रिज्या 21 cm वाले वृत्त का एक चाप केंद्र पर 60° का कोण अंतरित करता है। ज्ञात कीजिए।

संगत जीवा द्वारा बनाए गए वृत्तखंड का क्षेत्रफल  [ प्रयोग कीजिए =`22/7`]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×