Advertisements
Advertisements
प्रश्न
Find the ratio in which the point P(m, 6) divides the join of A(-4, 3) and B(2, 8) Also, find the value of m.
उत्तर
Let the point P(m,6) divide the line AB in the ratio k :.1
Then, by the section formula:
`x = (mx_2+nx_1)/(m+n) , y =(my_2+ny_1)/(m+n)`
The coordinates of P are (m,6).
`m = (2k-4)/(k+1) , 6 = (8k+3)/(k+1)`
⇒ m (k+1)= 2k-4,6k+6=8k+3
⇒m (k+1) = 2k -4 , 6-3= 8k-6k
⇒m(k+1) = 2k-4, 2k = 3
`⇒m(k+1) = 2k-4,k=3/2`
Therefore, the point P divides the line AB in the ratio 3:2
Now, putting the value of k in the equation m(k+1) = 2k-4 , we get:
`m(3/2+1) = 2(3/2)-4`
`⇒ m((3+2)/2) = 3-4`
` ⇒ (5m)/2 = -1 ⇒ 5m = -2 ⇒m=-2/5`
Therefore, the value of `m = -2/5`
So, the coordinates of P are `(-2/5,6).`
APPEARS IN
संबंधित प्रश्न
A (3, 2) and B (−2, 1) are two vertices of a triangle ABC whose centroid G has the coordinates `(5/3,-1/3)`Find the coordinates of the third vertex C of the triangle.
The points (3, -4) and (-6, 2) are the extremities of a diagonal of a parallelogram. If the third vertex is (-1, -3). Find the coordinates of the fourth vertex.
If A and B are (1, 4) and (5, 2) respectively, find the coordinates of P when AP/BP = 3/4.
If the poin A(0,2) is equidistant form the points B (3, p) and C (p ,5) find the value of p. Also, find the length of AB.
If (2, p) is the midpoint of the line segment joining the points A(6, -5) and B(-2,11) find the value of p.
`"Find the ratio in which the poin "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).`
In what ratio does the line x - y - 2 = 0 divide the line segment joining the points A (3, 1) and B (8, 9)?
If the point `P (1/2,y)` lies on the line segment joining the points A(3, -5) and B(-7, 9) then find the ratio in which P divides AB. Also, find the value of y.
The base QR of a n equilateral triangle PQR lies on x-axis. The coordinates of the point Q are (-4, 0) and origin is the midpoint of the base. Find the coordinates of the points P and R.
If the vertices of ΔABC be A(1, -3) B(4, p) and C(-9, 7) and its area is 15 square units, find the values of p
Find the centroid of ΔABC whose vertices are A(2,2) , B (-4,-4) and C (5,-8).
The co-ordinates of point A and B are 4 and -8 respectively. Find d(A, B).
If the point \[C \left( - 1, 2 \right)\] divides internally the line segment joining the points A (2, 5) and B( x, y ) in the ratio 3 : 4 , find the value of x2 + y2 .
The points \[A \left( x_1 , y_1 \right) , B\left( x_2 , y_2 \right) , C\left( x_3 , y_3 \right)\] are the vertices of ΔABC .
(i) The median from A meets BC at D . Find the coordinates of the point D.
(ii) Find the coordinates of the point P on AD such that AP : PD = 2 : 1.
(iii) Find the points of coordinates Q and R on medians BE and CF respectively such thatBQ : QE = 2 : 1 and CR : RF = 2 : 1.
(iv) What are the coordinates of the centropid of the triangle ABC ?
If the points A(1, –2), B(2, 3) C(a, 2) and D(– 4, –3) form a parallelogram, find the value of a and height of the parallelogram taking AB as base.
If the distance between the points (3, 0) and (0, y) is 5 units and y is positive. then what is the value of y?
The distance between the points (a cos 25°, 0) and (0, a cos 65°) is
If Points (1, 2) (−5, 6) and (a, −2) are collinear, then a =
Find the point on the y-axis which is equidistant from the points (S, - 2) and (- 3, 2).