हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find the area of the region bounded by the line y = 2x + 5 and the parabola y = x2 – 2x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by the line y = 2x + 5 and the parabola y = x2 – 2x

योग

उत्तर

First, we find the point of intersection of

y = 2x + 5 and y = x2 – 2x

x2 – 2x = 2x + 5

x2 – 4x – 5 = 0

(x – 5)(x + 1) = 0

x = 5, x = – 1

when x = 5, y = 15

x = – 1, y = 3

(5, 15)(– 1, 3) are intersecting points.

Area required = `int_"a"^"b" (y_"L" -y_"C") "d"x`

= `int_(-1)^5 (2x + 5)  "d"x - int_(-1)^5 (x^2 - 2x)  "d"x`

= `[(2x^2)/2 + 5x]_(-1)^5 - [x^3/3 - (2x^2)/2]_(-1)^5`

= `[25 + 25 - 1 + 5] - [125/3 - 25 + 1/3 + 1]`

= 54 – 18

= 36

Area required = 36 sq. units

shaalaa.com
Evaluation of a Bounded Plane Area by Integration
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.8 [पृष्ठ १३४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.8 | Q 4 | पृष्ठ १३४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×