हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find the area of the region bounded by y = tan x, y = cot x and the lines x = 0, x = π2, y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by y = tan x, y = cot x and the lines x = 0, x = `pi/2`, y = 0

योग

उत्तर

First find the intersecting point of y = tan x and y = cot x

tan x = cot x

`tanx/cotx` = 1

tan2x = 1

tan x = 1

x = `pi/4`, y = 1

Required Area = `int_0^(pi/2) tan x  "d"x + int_(pi/4)^(pi/2) cot x  "d"x`

= `[log sec x]_0^(pi/4) + [log sin x]_(pi/4)^(pi/2)`

= `[log sec  pi/4 - log sec 0] + log sin  pi/2 - log sin  pi/4]`

= `log sqrt(2) - 0 + 0 - log  1/sqrt(2)`

= `log sqrt(2) + log sqrt(2)`

= `2 log sqrt(2)`

= `log(sqrt2)^2`

= log 2 sq.units 

shaalaa.com
Evaluation of a Bounded Plane Area by Integration
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.8 [पृष्ठ १३४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.8 | Q 6 | पृष्ठ १३४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×