हिंदी

From the figure, identify a diameter. - Mathematics

Advertisements
Advertisements

प्रश्न

From the figure, identify a diameter.

 

एक पंक्ति में उत्तर

उत्तर

A diameter - `overline"AC"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Basic Geometrical Ideas - Exercise 4.6 [पृष्ठ ८४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 6
अध्याय 4 Basic Geometrical Ideas
Exercise 4.6 | Q 1. (c) | पृष्ठ ८४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In fig., O is the centre of the circle, PA and PB are tangent segments. Show that the quadrilateral AOBP is cyclic.


In the given figure, AB is a chord of length 16 cm of a circle of radius 10 cm. The tangents at A and B intersect at a point P. Find the length of PA.


In the given figure, O is the centre of the two concentric circles of radii 4 cm and 6cm respectively. AP and PB are tangents to the outer and inner circle respectively. If PA = 10cm, find the length of PB up to one place of the decimal.


In Fig 2, a circle touches the side DF of ΔEDF at H and touches ED and EF produced at K and M respectively. If EK = 9 cm, then the perimeter of ΔEDF (in cm) is:


In a cyclic quadrilateral ABCD, if A = 3 (m ∠C). Find m ∠A.

 

In the given figure, PO \[\perp\]  QO. The tangents to the circle at P and Q intersect at a point T. Prove that PQ and OTare right bisector of each other.


In following fig. ABC is an equilateral triangle . A circle is drawn with centre A so that ot cuts AB and AC at M and N respectively. Prove that BN = CM.


Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA


C(O, r1) and C(O, r2) are two concentric circles with r1 > r2 AB is a chord of C(O, r1) touching C(O, r2) at C then ______


Two chords AB and AC of a circle subtends angles equal to 90º and 150º, respectively at the centre. Find ∠BAC, if AB and AC lie on the opposite sides of the centre.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×