हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

In a double-slit experiment the angular width of a fringe is found to be 0.2° on a screen placed 1 m away. The wavelength of light used is 600 nm. What will be the angular width of the fringe if - Physics

Advertisements
Advertisements

प्रश्न

In a double-slit experiment the angular width of a fringe is found to be 0.2° on a screen placed 1 m away. The wavelength of light used is 600 nm. What will be the angular width of the fringe if the entire experimental apparatus is immersed in water? Take refractive index of water to be 4/3.

संख्यात्मक

उत्तर

Distance of the screen from the slits, D = 1 m

Wavelength of light used, `lambda_1` = 600 nm

Angular width of the fringe in air θ1 = 0.2°

Angular width of the fringe in water = θ2

Refractive index of water, μ = `4/3`

Refractive index is related to angular width as:

μ = `θ_1/θ_2`

θ2 = `3/4 θ_1`

= `3/4 xx 0.2`

= 0.15

Therefore, the angular width of the fringe in water will reduce to 0.15°.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Wave Optics - Exercise [पृष्ठ ३८३]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
अध्याय 10 Wave Optics
Exercise | Q 10.7 | पृष्ठ ३८३
एनसीईआरटी Physics [English] Class 12
अध्याय 10 Wave Optics
Exercise | Q 7 | पृष्ठ ३८३

संबंधित प्रश्न

(i) In Young's double-slit experiment, deduce the condition for (a) constructive and (b) destructive interferences at a point on the screen. Draw a graph showing variation of intensity in the interference pattern against position 'x' on the screen.

(b) Compare the interference pattern observed in Young's double-slit experiment with single-slit diffraction pattern, pointing out three distinguishing features.


In a double-slit experiment using the light of wavelength 600 nm, the angular width of the fringe formed on a distant screen is 0.1°. Find the spacing between the two slits.


In Young’s double slit experiment using monochromatic light of wavelength λ, the intensity of light at a point on the screen where path difference is λ, is K units. Find out the intensity of light at a point where path difference is λ/3.


In Young's double slit experiment, derive the condition for

(i) constructive interference and

(ii) destructive interference at a point on the screen.


A Young's double slit experiment is performed with white light.

(a) The central fringe will be white.

(b) There will not be a completely dark fringe.

(c) The fringe next to the central will be red.

(d) The fringe next to the central will be violet.


White light is used in a Young's double slit experiment. Find the minimum order of the violet fringe \[\left( \lambda = 400\text{ nm} \right)\] which overlaps with a red fringe \[\left( \lambda = 700\text{ nm} \right).\]


A thin paper of thickness 0.02 mm having a refractive index 1.45 is pasted across one of the slits in a Young's double slit experiment. The paper transmits 4/9 of the light energy falling on it. (a) Find the ratio of the maximum intensity to the minimum intensity in the fringe pattern. (b) How many fringes will cross through the centre if an identical paper piece is pasted on the other slit also? The wavelength of the light used is 600 nm.


In Young’s double-slit experiment, using monochromatic light, fringes are obtained on a screen placed at some distance from the slits. If the screen is moved by 5 x 10-2 m towards the slits, the change in the fringe width is 3 x 10-5 m. If the distance between the two slits is 10-3 m, calculate the wavelength of the light used.


In Young’s double-slit experiment, show that: 

`beta = (lambda "D")/"d"` where the terms have their usual meaning.


Wavefront is ______.


When a beam of light is used to determine the position of an object, the maximum accuracy is achieved, if the light is ______.


In Young’s double slit experiment, what should be the phase difference between the two overlapping waves to obtain 5th dark band/fringe on the screen?


Young's double slit experiment is made in a liquid. The 10th bright fringe lies in liquid where 6th dark fringe lies in vacuum. The refractive index of the liquid is approximately


In Young's double slit experiment shown in figure S1 and S2 are coherent sources and S is the screen having a hole at a point 1.0 mm away from the central line. White light (400 to 700 nm) is sent through the slits. Which wavelength passing through the hole has strong intensity?


A slit of width 0.6 mm is illuminated by a beam of light consisting of two wavelengths 600 nm and 480 nm. The diffraction pattern is observed on a screen 1.0 m from the slit. Find:

  1. The distance of the second bright fringe from the central maximum pertaining to the light of 600 nm.
  2. The least distance from the central maximum at which bright fringes due to both wavelengths coincide.

The central fringe of the interference pattern produced by the light of wavelength 6000 Å is found to shift to the position of the fourth bright fringe after a glass plate of refractive index 1.5 is introduced in the path of one of the beams. The thickness of the glass plate would be ______.


In Young's double slit experiment the two slits are 0.6 mm distance apart. Interference pattern is observed on a screen at a distance 80 cm from the slits. The first dark fringe is observed on the screen directly opposite to one of the slits. The wavelength of light will be ______ nm.


In Young’s double slit experiment, how is interference pattern affected when the following changes are made:

  1. Slits are brought closer to each other.
  2. Screen is moved away from the slits.
  3. Red coloured light is replaced with blue coloured light.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×