Advertisements
Advertisements
प्रश्न
In fig, AB and CD are two equal chords of a circle with centre O. If M and N are the midpoints of AB and CD respectively,
prove that (a) ∠ ONM = ∠ ONM (b) ∠ AMN = ∠ CNM.
उत्तर
M and N are mid points of equal diords AB and CD respectively.
ON ⊥ CD and OM ⊥ AB
∴ ∠ ONC = ∠ OMA (90° each) ...(1)
(A line bisecting the chord and passing through the centre of the circle is perpendicular to the chord)
∴ AB = CD
ON = OM (equal chords are equidistant from the centre)
In Δ MON ,
MO = NO
∴ ∠ ONM = ∠ OMN ..(2)
Subtracting (2) from ( 1)
∠ONC - ∠ ONM = ∠ OMA - ∠ OMN
∠ CNM =∠ AMN
APPEARS IN
संबंधित प्रश्न
M and N are the mid-points of two equal chords AB and CD respectively of a circle with centre O. prove that:
(i) ∠BMN = ∠DNM.
(ii) ∠AMN = ∠CNM.
Two equal chords AB and CD of a circle with centre O, intersect each other at point P inside the circle, prove that:
(i) AP = CP,
(ii) BP = DP
OABC is a rhombus whose three vertices A, B and C lie on a circle with centre O. If the area of the rhombus is `32sqrt(3) cm^2` find the radius of the circle.
In a circle, with centre O, a cyclic quadrilateral ABCD is drawn with AB as a diameter of the circle and CD equal to radius of the circle. If AD and BC produced meet at point P; show that ∠APB = 60°.
AB and AC are two equal chords of a circle with centre o such that LABO and LCBO are equal. Prove that AB = BC.
In the given Figure, AB and CD are two chords of a circle, intersecting each other at P such that AP = CP. Show that AB= CD.
A straight line is drawn cutting two equal circles and passing through the mid-point M of the line joining their centers O and O'. Prove that the chords AB and CD, which are intercepted by the two circles, are equal.
Two equal chords AB and CD of a circle with center O, intersect each other at point P inside the circle.
Prove that: (i) AP = CP ; (ii) BP = DP
Prove that equal chords of congruent circles subtend equal angles at their center.
In the adjoining diagram, chords AB, BC and CD are equal. O is the centre of the circle. If ∠ ABC = 120°, Calculate: (i) ∠ BAC, (ii) ∠ BEC, (iii) ∠ BED, (iv) ∠ COD