Advertisements
Advertisements
प्रश्न
In the adjoining diagram, chords AB, BC and CD are equal. O is the centre of the circle. If ∠ ABC = 120°, Calculate: (i) ∠ BAC, (ii) ∠ BEC, (iii) ∠ BED, (iv) ∠ COD
उत्तर
(i)
In Δ ABC,
∠ ABC + ∠ BAC + ∠ BCA = 180° ....( ∵ The sum of three angles of a triangle is 180°)
120° + ∠ BAC + ∠ BCA = 180° ....( ∵ ∠ ABC = 120° (Given))
∠ BAC + ∠ BCA = 60°
But, BA = BC.
∠ BAC + ∠ BCA = 60°
2 ∠ BCA = 60°
∠ BCA = 30°
(ii) ∠ BEC = ∠ BAC = 30°
(iii)
AB = BC = CD
Arc AB = Arc BC = Arc CD
Now,
∠ COB = 2 ∠ CAB
∠ COB = 2 x 30° = 60°
∠ DOC = ∠ COB = 60°
∠ DEC = `1/2 "∠ DOC" = 1/2 xx 60° = 30° `
∴ ∠ BED = ∠ BEC + ∠ DEC
∠ BED = ∠ BAC + ∠ DEC
∠ BED = 30° + 30° = 60°
(iv) ∠ COD = 60°
APPEARS IN
संबंधित प्रश्न
OABC is a rhombus whose three vertices A, B and C lie on a circle with centre O. If the radius of the circle is 10 cm, find the area of the rhombus.
OABC is a rhombus whose three vertices A, B and C lie on a circle with centre O. If the area of the rhombus is `32sqrt(3) cm^2` find the radius of the circle.
In a circle, with centre O, a cyclic quadrilateral ABCD is drawn with AB as a diameter of the circle and CD equal to radius of the circle. If AD and BC produced meet at point P; show that ∠APB = 60°.
In fig. the centre of the circle is O. PQ and RS are two equal chords of the circle which , when produced , meet at T outside the circle . Prove that (a) TP = TR (b) TQ = TS.
Two congruent drdes have their centres at 0 and P. Mis the midpoint of the line segment OP. A straight line is drawn through M cutting the two circles at the points A, B, C and D. Prove that the chords AB and CD are equal.
In following figure .,XY and YZ are two equal chords of a circle with centre O. Prove that the bisector of ∠ XYZ passes through O.
In the given Figure, AB and CD are two chords of a circle, intersecting each other at P such that AP = CP. Show that AB= CD.
In fig., chords AB and CD of a circle intersect at P. AP = 5cm, BP= 3cm and CP = 2.5cm. Determine the length of DP.
Prove that equal chords of congruent circles subtend equal angles at their center.
Two equal circles intersect in P and Q. A straight line through P meets the circles in A and B. Prove that QA = QB