हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

In a soccer practice session the football is kept at the centre of the filed 40 yards from the 10 ft high goalposts. - Physics

Advertisements
Advertisements

प्रश्न

In a soccer practice session the football is kept at the centre of the filed 40 yards from the 10 ft high goalposts. A goal is attempted by kicking the football at a speed of 64 ft/s at an angle of 45° to the horizontal. Will the ball reach the goal post?

टिप्पणी लिखिए

उत्तर

Given:
Height of the goalpost = 10 ft
The football is kept at a distance of 40 yards, i.e., 120 ft, from the goalpost.
Initial speed u with which the ball is hit = 64 ft/s
Acceleration due to gravity, a = g = 9.8 m/s2 = 32.2 ft/s2
For the given question, 40 yards is the horizontal range (R).
Angle of projection, α = 45°
We know that the horizontal range is given by
R = u cos α(t)

\[\Rightarrow t = \frac{R}{u\cos\alpha}\]

\[ = \frac{120}{64\cos45^\circ} = 2 . 65 s\]

Vertical distance covered by the football:

\[y = u\text{ sin } \alpha\left( t \right) - \frac{1}{2}g t^2 \]

\[ = 64 \times \frac{1}{\sqrt{2}} \times 2 . 65 - \frac{1}{2} \times 32 . 2 \times \left( 2 . 65 \right)^2\]

 = 6.86 ft < Height of the goalpost
Yes, the football will reach the goalpost 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Rest and Motion: Kinematics - Exercise [पृष्ठ ५२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 3 Rest and Motion: Kinematics
Exercise | Q 34 | पृष्ठ ५२

संबंधित प्रश्न

A car moving along a straight highway with a speed of 126 km h–1 is brought to a stop within a distance of 200 m. What is the retardation of the car (assumed uniform), and how long does it take for the car to stop?


A player throws a ball upwards with an initial speed of 29.4 m s–1.

  1. What is the direction of acceleration during the upward motion of the ball?
  2. What are the velocity and acceleration of the ball at the highest point of its motion?
  3. Choose the x = 0 m and t = 0 s to be the location and time of the ball at its highest point, vertically downward direction to be the positive direction of x-axis, and give the signs of position, velocity and acceleration of the ball during its upward and downward motion.
  4. To what height does the ball rise and after how long does the ball return to the player’s hands? (Take g = 9.8 m s–2 and neglect air resistance).

In a projectile motion the velocity 


Two bullets are fired simultaneously, horizontally and with different speeds from the same place. Which bullet will hit he ground first? 


A person travelling at 43.2 km/h applies the brake giving a deceleration of 6.0 m/s2 to his scooter. How far will it travel before stopping?

 

A train starts from rest and moves with a constant acceleration of 2.0 m/s2 for half a minute. The brakes are then applied and the train comes to rest in one minute. Find the total distance moved by the train .


A car travelling at 60 km/h overtakes another car travelling at 42 km/h. Assuming each car to be 5.0 m long, find the time taken during the overtake and the total road distance used for the overtake.


A ball is projected vertically upward with a speed of 50 m/s. Find the maximum height. 


A ball is projected vertically upward with a speed of 50 m/s. Find the speed at half the maximum height. Take g = 10 m/s2


A stone is thrown vertically upward with a speed of 28 m/s.Find its velocity one second before it reaches the maximum height.


A stone is thrown vertically upward with a speed of 28 m/s. change if the initial speed is more than 28 m/s such as 40 m/s or 80 m/s ?


A healthy youngman standing at a distance of 7 m from a 11.8 m high building sees a kid slipping from the top floor. With what speed (assumed uniform) should he run to catch the kid at the arms height (1.8 m)?


A ball is thrown at a speed of 40 m/s at an angle of 60° with the horizontal. Find the maximum height reached  .


A ball is thrown at a speed of 40 m/s at an angle of 60° with the horizontal. Find   the range of the ball. Take g = 10 m/s2


A river 400 m wide is flowing at a rate of 2.0 m/s. A boat is sailing at a velocity of 10 m/s with respect to the water, in a direction perpendicular to the river. Find the time taken by the boat to reach the opposite bank. 


A swimmer wishes to cross a 500 m wide river flowing at 5 km/h. His speed with respect to water is 3 km/h. If he heads in a direction making an angle θ with the flow, find the time he takes to cross the river.


An aeroplane has to go from a point A to another point B, 500 km away due 30° east of north. A wind is blowing due north at a speed of 20 m/s. The air-speed of the plane is 150 m/s. Find the direction in which the pilot should head the plane to reach the point B.   


An aeroplane has to go from a point A to another point B, 500 km away due 30° east of north. A wind is blowing due north at a speed of 20 m/s. The air-speed of the plane is 150 m/s. Find the time taken by the plane to go from A to B.


It is a common observation that rain clouds can be at about a kilometre altitude above the ground.

  1. If a rain drop falls from such a height freely under gravity, what will be its speed? Also calculate in km/h. ( g = 10 m/s2)
  2. A typical rain drop is about 4mm diameter. Momentum is mass x speed in magnitude. Estimate its momentum when it hits ground.
  3. Estimate the time required to flatten the drop.
  4. Rate of change of momentum is force. Estimate how much force such a drop would exert on you.
  5. Estimate the order of magnitude force on umbrella. Typical lateral separation between two rain drops is 5 cm.

(Assume that umbrella is circular and has a diameter of 1 m and cloth is not pierced through !!)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×