हिंदी

In the given figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In the given figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF. 

Proof :  In ΔXDE, PQ || DE         ...`square`

∴ `"XP"/square = square/"QE"`                               ...(I) (Basic proportionality theorem)

In ΔXEF, QR || EF                       ...`square`

∴ `square/square = square/square                                                           ..."(II)" square`

∴ `square/square = square/square`                                ...from (I) and (II)

∴ seg PR || seg DF           ...(converse of basic proportionality theorem)

योग

उत्तर

Given:
Seg PQ || seg DE
seg QR || seg EF

To Prove: seg PR || seg DF

Proof :  

In ΔXDE, PQ || DE         ... Given

∴ `"XP"/underline("PD") = underline("XQ")/"QE"`                ...(I)(Basic proportionality theorem)

In ΔXEF, QR || EF           ... Given

∴ `underline("XR")/underline("RF") = underline("XQ")/underline("QE")`                 ...(II)(Basic proportionality theorem)

∴ `underline("XP")/underline("PD") = underline("XR")/underline("RF")`                  ...from (I) and (II)

∴ seg PR || seg DF           ...(converse of basic proportionality theorem)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Similarity - Practice Set 1.2 [पृष्ठ १५]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 1 Similarity
Practice Set 1.2 | Q 10 | पृष्ठ १५

संबंधित प्रश्न

In the given figure, ABC is a triangle. DE is parallel to BC and `(AD)/(DB) = 3/2`.

  1. Determine the ratios `(AD)/(AB)` and `(DE)/(BC)`. 
  2. Prove that ∆DEF is similar to ∆CBF. Hence, find `(EF)/(FB).`
  3. What is the ratio of the areas of ∆DEF and ∆BFC?

In the given figure, triangle ABC is similar to  triangle PQR. AM and PN are altitudes whereas AX and PY are medians.

prove  that 

`("AM")/("PN")=("AX")/("PY")`


ΔABC~ΔPQR and ar(ΔABC) = 4, ar(ΔPQR) . If BC = 12cm, find QR. 


Δ ABC -  Δ XYZ. If area of  Δ ABC is 9cm2 and area of  Δ XYZ is 16cm2 and if BC= 2.1cm, find the length of YZ. 


In Δ ABC , MN || BC .

If `"AB"/"AM" = 9/4` , find `("Ar" ("trapezium MBCN"))/("Ar" . (triangle "ABC"))`


In the figure , ABCD is a quadrilateral . F is a point on AD such that AF = 2.1 cm and FD = 4.9 cm . E and G are points on AC and AB respectively such that EF || CD and GE || BC . Find `("Ar" triangle "BCD")/("Ar" triangle "GEF")`


A triangle ABC is enlarged, about the point O as centre of enlargement, and the scale factor is 3. Find : OC', if OC = 21 cm.

Also, state the value of :

  1. `(OB^')/(OB)`
  2. `(C^'A^')/(CA)`

A model of an aeroplane is made to a scale of 1 : 400. Calculate : the length, in m, of the aeroplane, if length of its model is 16 cm.


On a map drawn to a scale of 1 : 2,50,000; a triangular plot of land has the following measurements : AB = 3 cm, BC = 4 cm and  ∠ABC = 90°.

Calculate : the actual lengths of AB and BC in km. 


In the following figure, in Δ PQR, seg RS is the bisector of ∠PRQ.

PS = 11, SQ = 12, PR = 22. Find QR.


In the following figure, point D divides AB in the ratio 3 : 5. Find : `(AE)/(AC)`


If ΔABC ~ ΔDEF, then writes the corresponding congruent angles and also write the ratio of corresponding sides. 


In ΔABC, D and E are the mid-point on AB and AC such that DE || BC.
If AD : BD = 4 : 5 and EC = 2.5cm, find AE.


If ΔABC, D and E are points on AB and AC. Show that DE || BC for each of the following case or not:
AD = 5.7cm, BD = 9.5cm, AE = 3.3cm, and EC = 5.5cm


In a quadrilateral PQRS, the diagonals PR and QS intersect each other at the point T. If PT:TR = QT :TS = 1:2, show that ΔPTQ - DRTS


In a right-angled triangle ABC, ∠B = 90°, P and Q are the points on the sides AB and AC such as PQBC, AB = 8 cm, AQ = 6 cm and PA:AB = 1:3. Find the lengths of AC and BC.


If figure OPRQ is a square and ∠MLN = 90°. Prove that ∆LOP ~ ∆RPN


In fig., seg AC and seg BD intersect each other at point P.


`"AP"/"PC" = "BP"/"PD"` then prove that ΔABP ~ ΔCDP


Two triangles are similar. Smaller triangle’s sides are 4 cm, 5 cm, 6 cm. Perimeter of larger triangle is 90 cm then find the sides of larger triangle.


In figure, if AD = 6cm, DB = 9cm, AE = 8cm and EC = 12cm and ∠ADE = 48°. Find ∠ABC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×