Advertisements
Advertisements
प्रश्न
जर tan θ – sin2θ = cos2θ, तर sin2θ = `1/2` हे दाखवा.
उत्तर
tan θ – sin2θ = cos2θ ......[Given]
∴ tan θ = sin2θ + cos2θ
∴ tan θ = 1 ....[∵ sin2θ + cos2θ = 1]
परंतु, tan 45° = 1
∴ tan θ = tan 45°
∴ θ = 45°
sin2θ = sin245°
= `(1/sqrt(2))^2`
= `1/2`
APPEARS IN
संबंधित प्रश्न
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
जर 3 sin θ = 4 cos θ, तर sec θ = ?
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
जर sin θ + cos θ = `sqrt(3)`, तर tan θ + cot θ = 1 हे दाखवा.
दाखवा की: `tanA/(1 + tan^2 A)^2 + cotA/(1 + cot^2A)^2` = sinA × cosA.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ