Advertisements
Advertisements
प्रश्न
किसी समांतर श्रेणी के m तथा n पदों के योगफलों का अनुपात m2 : n2 है तो दर्शाइए कि m वें तथा n वें पदों का अनुपात (2m – 1) : (2n – 1) है।
उत्तर
मान लीजिए समांतर श्रेणी का पहला पद a और सार्व अंतर d है।
∴ m पदों का योगफल = `"m"/2[2"a" + ("m" - 1)"d"]`
n पदों का योगफल = `"n"/2[2"a" + ("n" - 1)"d"]`
दिया है: `("m"/2[2"a" + ("m" - 1)"d"])/("n"/2[2"a" + ("n" - 1)"d"])`
= `"m"^2/"n"^2`
या `(2"a" + ("m" - 1)"d")/(2"a" + ("n' - 1)"d")` = `"m"/"n"` ...............(i)
अब `("a" + ("m" - 1)"d")/("a" + ("n" - 1)"d") = (2"a" + (2"m" - 2)"d")/(2"a" + (2"n" - 2)"d")` ...........(ii)
समीकरण (i) और (ii) की तुलना करने पर
समीकरण (i) में m − 1 के स्थान पर समीकरण (ii) में 2m − 2 अथवा m के स्थान पर 2m − 1 रखने पर तथा
इसी प्रकार n − 1 के स्थान पर 2n − 2 है अथवा n के स्थान पर 2n − 1 रखने पर
∴ `(2"a" + (2"m" - 2)"d")/(2"a" + (2"n" - 2)"d") = (2"m" - 1)/(2"n" - 1)`
या `("a" + ("m" - 1)"d")/("a" + ("n" - 1)"d")`
= `("m""वाँ पद")/("n""वाँ पद") = (2"m" - 1)/(2"n" - 1)`
APPEARS IN
संबंधित प्रश्न
किसी समांतर श्रेणी में प्रथम पद 2 है तथा प्रथम पाँच पदों का योगफल, अगले पाँच पदों के योगफल का एक चौथाई है। दर्शाइए कि 20वाँ पद −112 है।
समांतर श्रेणी −6, `-11/2`, −5, ..... के कितने पदों का योगफल –25 है?
किसी समांतर श्रेणी का pवाँ पद `1/"q"` तथा qवाँ पद `1/"p"`, हो तो सिद्ध कीजिए कि प्रथम pq पदों का योग `1/2 ("pq" + 1)` होगा जहाँ p ≠ q
यदि किसी समांतर श्रेणी 25, 22, 19, …... के कुछ पदों का योगफल 116 है तो अंतिम पद ज्ञात कीजिए।
यदि किसी समांतर श्रेणी के n पदों का योगफल (pn + qn2), है, जहाँ p तथा q अचर हों तो सार्व अंतर ज्ञात कीजिए।
दो समांतर श्रेणियों के n पदों के योगफल का अनुपात 5n + 4 : 9n + 6 हो, तो उनके 18 वें पदों का अनुपात ज्ञात कीजिए।
5 और 26 के बीच ऐसी 5 संख्याएँ डालिए ताकि प्राप्त अनुक्रम समांतर श्रेणी बन जाए।
एक व्यक्ति ॠण का भुगतान 100 रुपये की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में 5 रुपये प्रति माह बढ़ता है तो 30 वीं किश्त की राशि क्या होगी?
यदि किसी समांतर श्रेणी के nवें पदों का योगफल 3n2 + 5n हैं तथा इसका mवाँ पद 164 है, तो m का मान ज्ञात कीजिए।
यदि किसी समांतर श्रेणी के प्रथम p पदों का योग, प्रथम q पदों के योगफल के बराबर हो तो प्रथम (p + q) पदों का योगफल ज्ञात कीजिए।
यदि किसी समांतर श्रेणी के प्रथम p, q, r पदों का योगफल क्रमशः a, b, तथा c, हो तो सिद्ध कीजिए कि: `"a"/"p"("q" - "r") + "b"/"q"("r" - "p") + "c"/"r"("p" - "q") = 0`
यदि `("a"^"n" + "b"^"n")/("a"^("n"- 1) + "b"^("n" - 1))`, a तथा b के मध्य समांतर माध्य हो तो n का मान ज्ञात कीजिए।
यदि किसी समांतर श्रेणी की तीन संख्याओं का योग 24 है तथा उनका गुणनफल 440 है, तो संख्याएँ ज्ञात कीजिए।
200 और 400 के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो 7 से विभाजित हों।
1 से 100 तक आने वाले उन सभी पूर्णांकों का योगफल ज्ञात कीजिए जो 2 या 5 से विभाजित हों।
दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको 4 से विभाजित करने पर शेषफल 1 हो।
यदि `"a"(1/"b" + 1/"c"), "b"(1/"c" + 1/"a"), "c"(1/"a" + 1/"b")` समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि a, b, c समांतर श्रेणी में हैं।
एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा उनसे यह भी करने को कहता है कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस श्रृंखला को जारी रखे। यह कल्पना करके कि श्रंखला न टूटे तो 8वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च 50 पैसे है।
एक निर्माता घोषित करता है कि उसकी मशीन जिसका मूल्य 15625 रूपये है, हर वर्ष 20% की दर से उसका अवमूल्यन होता है। 5 वर्ष बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।
किसी कार्य को कुछ दिनों में पूरा करने के लिए 150 कर्मचारी लगाए गए। दूसरे दिन 4 कर्मचारियों ने काम छोड़ दिया, तीसरे दिन 4 और कर्मचारियों ने काम छोड़ दिया तथा इस प्रकार अन्य। अब कार्य पूर्ण करने में 8 दिन अधिक लगते हैं, तो दिनों की संख्या ज्ञात कीजिए, जिनमें कार्य पूरा किया गया।
कोई किसान एक पुराने ट्रैक्टर को ₹ 12000 में खरीदता है। वह ₹ 6000 नकद भुगतान करता है और शेष राशि को ₹ 500 की वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 12% वार्षिक ब्याज भी देता है। किसान को ट्रैक्टर की कुल कितनी कीमत देनी पड़ेगी?