हिंदी

यदि किसी समांतर श्रेणी के प्रथम p, q, r पदों का योगफल क्रमशः a, b, तथा c, हो तो सिद्ध कीजिए कि: apqrbqrpcrpqap(q-r)+bq(r-p)+cr(p-q)=0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि किसी समांतर श्रेणी के प्रथम p, q, r पदों का योगफल क्रमशः a, b, तथा c, हो तो सिद्ध कीजिए कि: `"a"/"p"("q" - "r") + "b"/"q"("r" - "p") + "c"/"r"("p" - "q") = 0`

योग

उत्तर

p पदों का योगफल = `"p"/2[2"a" + ("p" - 1)d]  = "a"`

`2"a" + ("p" - 1)"d" = (2"a")/"p"` ............(i)

q पदों का योगफल = `"q"/2[2"a" + ("q" - 1)"d"]  = b`

`2"a"("q" - 1)"d" = (2"b")/"q"` ...............(ii)

r पदों का योगफल = `"r"/2[2"a" + ("r" - 1)"d"] = "c"`

∴ `2"a" + ("r" - 1)"d" = (2"c")/"r"` ............(iii)

समीकरण (i) को q − r से, समीकरण (ii) को (r − p) से, समीकरण (i) को (p − q) से गुणा करके जोड़ने पर

[2a + (p − 1)d](q − r) + [2a + (q − 1)d](r − p) + [2a + (r − 1)d](p − q)

= `(2"a")/"p" ("q" - "r") + (2"b")/"q"("r" - "p") + (2"c")/"r"("p" - "q")`

⇒  `(2"a")/"p" ("q" - "r") + (2"b")/"q"("r" - "p") + (2"c")/"r"("p" - "q")`

= 2a[q − r + r − p + p − q] + d[(p − 1)(q − r)] + (q − 1)(r − p) + (r − 1)(p − q)]

= 0 + d [p(q − r) + q(r − p) + r(p − q) −q − r + −p + p −q]

= d [pq − pr + qr − pq + pr − qr]

= 0

2 से भाग देने पर

`"a"/"p" ("q" - "r") + "b"/"q" ("r" - "p") + "c"/"r" ("p" - "q") = 0`

shaalaa.com
समांतर श्रेणी
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अनुक्रम तथा श्रेणी - प्रश्नावली 9.2 [पृष्ठ १९९]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 9 अनुक्रम तथा श्रेणी
प्रश्नावली 9.2 | Q 11. | पृष्ठ १९९

संबंधित प्रश्न

1 से 2001 तक के विषम पूर्णांकों का योग ज्ञात कीजिए।


100 तथा 1000 के मध्य उन सभी प्राकृत संख्याओं का योगफल ज्ञात कीजिए जो 5 के गुणज हों।


समांतर श्रेणी −6, `-11/2`, −5, .....  के कितने पदों का योगफल –25 है?


यदि किसी समांतर श्रेणी 25, 22, 19, …... के कुछ पदों का योगफल 116 है तो अंतिम पद ज्ञात कीजिए।


उस समांतर श्रेणी के n पदों का योगफल ज्ञात कीजिए, जिसका k वाँ पद 5k + 1 है।


यदि किसी समांतर श्रेणी के n पदों का योगफल (pn + qn2), है, जहाँ p तथा q अचर हों तो सार्व अंतर ज्ञात कीजिए।


दो समांतर श्रेणियों के n पदों के योगफल का अनुपात 5n + 4 : 9n + 6 हो, तो उनके 18 वें पदों का अनुपात ज्ञात कीजिए।


5 और 26 के बीच ऐसी 5 संख्याएँ डालिए ताकि प्राप्त अनुक्रम समांतर श्रेणी बन जाए।


यदि किसी समांतर श्रेणी के प्रथम p पदों का योग, प्रथम q पदों के योगफल के बराबर हो तो प्रथम (p + q) पदों का योगफल ज्ञात कीजिए।


यदि `("a"^"n" + "b"^"n")/("a"^("n"- 1) + "b"^("n" - 1))`, a तथा b के मध्य समांतर माध्य हो तो n का मान ज्ञात कीजिए।


m संख्याओं को 1 तथा 31 के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और 7वीं एवं (m – 1) वीं संख्याओं का अनुपात 5 : 9 है। तो m का मान ज्ञात कीजिए।


एक बहुभुज के दो क्रमिक अंत: कोणों का अंतर 5° है। यदि सबसे छोटा कोण 120° हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।


दर्शाइए कि किसी समांतर श्रेणी के (m + n)वें तथा (m – n)वें पदों का योग mवें पद का दुगुना है।


यदि किसी समांतर श्रेणी की तीन संख्याओं का योग 24 है तथा उनका गुणनफल 440 है, तो संख्याएँ ज्ञात कीजिए।


माना कि किसी समांतर श्रेणी के n, 2n तथा 3n पदों का योगफल क्रमशः S1, S2 तथा S3 है तो दिखाइए कि S3 = 3(S2 – S1)


200 और 400 के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो 7 से विभाजित हों।


1 से 100 तक आने वाले उन सभी पूर्णांकों का योगफल ज्ञात कीजिए जो 2 या 5 से विभाजित हों।


दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको 4 से विभाजित करने पर शेषफल 1 हो।


किसी समांतर श्रेणी का pवाँ, qवाँ, rवाँ पद क्रमशः a, b, c हैं, तो सिद्ध कीजिए
(q – r)a + (r – p)b + (p – q) c = 0


शमशाद अली 22000 रूपये में एक स्कूटर खरीदता है। वह 4000 रूपये नकद देता है तथा शेष राशि को 1000 रूपये वार्षिक किश्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 10% वार्षिक ब्याज भी देता है। उसे स्कूटर के लिए कुल कितनी राशि चुकानी पड़ेगी?


एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा उनसे यह भी करने को कहता है कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस श्रृंखला को जारी रखे। यह कल्पना करके कि श्रंखला न टूटे तो 8वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च 50 पैसे है।


एक निर्माता घोषित करता है कि उसकी मशीन जिसका मूल्य 15625 रूपये है, हर वर्ष 20% की दर से उसका अवमूल्यन होता है। 5 वर्ष बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।


कोई किसान एक पुराने ट्रैक्टर को ₹ 12000 में खरीदता है। वह ₹ 6000 नकद भुगतान करता है और शेष राशि को ₹ 500 की वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 12% वार्षिक ब्याज भी देता है। किसान को ट्रैक्टर की कुल कितनी कीमत देनी पड़ेगी?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×