Advertisements
Advertisements
प्रश्न
किसी समांतर श्रेणी का pवाँ पद `1/"q"` तथा qवाँ पद `1/"p"`, हो तो सिद्ध कीजिए कि प्रथम pq पदों का योग `1/2 ("pq" + 1)` होगा जहाँ p ≠ q
उत्तर
मान लीजिए प्रथम पद = a
और सार्व अंतर = d
∴ p वाँ पद = a + (p − 1)d = `1/"q"`..............(i)
q वाँ पद = a + (q − 1)d = `1/"p"` ................(ii)
समीकरण (ii) को (i) में से घटाने पर,
(p − 1)d = `1/"q" - 1/"p"`
= `("p" - "q")/"pq"`
⇒ d = `1/"pq"`
d का मान समीकरण (i) में रखने पर,
∴ a + (p − 1) `1/"pq" = 1/"q"`
a = `1/"q" - ("p"-1)/"pq"`
= `1/"q" - 1/"q" + 1/"pq"`
= `1/"pq"`
∴ pq पदों का योग = `"n"/2[2"a" + ("n" - 1)"d"]`
= `"pq"/2 [2 xx 1/"pq" + ("pq" - 1)1/"pq"]`
= `1/2[2 + "pq" - 1]`
= `1/2["pq" + 1]`
APPEARS IN
संबंधित प्रश्न
1 से 2001 तक के विषम पूर्णांकों का योग ज्ञात कीजिए।
किसी समांतर श्रेणी में प्रथम पद 2 है तथा प्रथम पाँच पदों का योगफल, अगले पाँच पदों के योगफल का एक चौथाई है। दर्शाइए कि 20वाँ पद −112 है।
समांतर श्रेणी −6, `-11/2`, −5, ..... के कितने पदों का योगफल –25 है?
उस समांतर श्रेणी के n पदों का योगफल ज्ञात कीजिए, जिसका k वाँ पद 5k + 1 है।
यदि किसी समांतर श्रेणी के n पदों का योगफल (pn + qn2), है, जहाँ p तथा q अचर हों तो सार्व अंतर ज्ञात कीजिए।
एक व्यक्ति ॠण का भुगतान 100 रुपये की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में 5 रुपये प्रति माह बढ़ता है तो 30 वीं किश्त की राशि क्या होगी?
किसी समांतर श्रेणी के m तथा n पदों के योगफलों का अनुपात m2 : n2 है तो दर्शाइए कि m वें तथा n वें पदों का अनुपात (2m – 1) : (2n – 1) है।
यदि किसी समांतर श्रेणी के प्रथम p, q, r पदों का योगफल क्रमशः a, b, तथा c, हो तो सिद्ध कीजिए कि: `"a"/"p"("q" - "r") + "b"/"q"("r" - "p") + "c"/"r"("p" - "q") = 0`
यदि `("a"^"n" + "b"^"n")/("a"^("n"- 1) + "b"^("n" - 1))`, a तथा b के मध्य समांतर माध्य हो तो n का मान ज्ञात कीजिए।
m संख्याओं को 1 तथा 31 के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और 7वीं एवं (m – 1) वीं संख्याओं का अनुपात 5 : 9 है। तो m का मान ज्ञात कीजिए।
एक बहुभुज के दो क्रमिक अंत: कोणों का अंतर 5° है। यदि सबसे छोटा कोण 120° हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।
दर्शाइए कि किसी समांतर श्रेणी के (m + n)वें तथा (m – n)वें पदों का योग mवें पद का दुगुना है।
यदि किसी समांतर श्रेणी की तीन संख्याओं का योग 24 है तथा उनका गुणनफल 440 है, तो संख्याएँ ज्ञात कीजिए।
माना कि किसी समांतर श्रेणी के n, 2n तथा 3n पदों का योगफल क्रमशः S1, S2 तथा S3 है तो दिखाइए कि S3 = 3(S2 – S1)
200 और 400 के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो 7 से विभाजित हों।
1 से 100 तक आने वाले उन सभी पूर्णांकों का योगफल ज्ञात कीजिए जो 2 या 5 से विभाजित हों।
दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको 4 से विभाजित करने पर शेषफल 1 हो।
किसी समांतर श्रेणी का pवाँ, qवाँ, rवाँ पद क्रमशः a, b, c हैं, तो सिद्ध कीजिए
(q – r)a + (r – p)b + (p – q) c = 0
यदि `"a"(1/"b" + 1/"c"), "b"(1/"c" + 1/"a"), "c"(1/"a" + 1/"b")` समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि a, b, c समांतर श्रेणी में हैं।
एक आदमी ने एक बैंक में 10000 रूपये 5% वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, 15वें वर्ष में उसके खाते में कितनी रकम हो गई तथा 20 वर्षों बाद कुल कितनी रकम हो गई, ज्ञात कीजिए।