हिंदी

किसी त्रिभुज ABC में, यदि ∠A का समद्विभाजक तथा BC का लंब समद्विभाजक प्रतिच्छेद करें, तो सिद्ध कीजिए कि वे ∆ABC के परिवृत्त पर प्रतिच्छेद करेंगे। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी त्रिभुज ABC में, यदि ∠A का समद्विभाजक तथा BC का लंब समद्विभाजक प्रतिच्छेद करें, तो सिद्ध कीजिए कि वे ∆ABC के परिवृत्त पर प्रतिच्छेद करेंगे।

योग

उत्तर

माना भुजा BC का लंब समद्विभाजक और ∠A का कोण समद्विभाजक बिंदु D पर मिलता है। मान लीजिए कि भुजा BC का लंब समद्विभाजक इसे E पर प्रतिच्छेद करता है।

भुजा BC का लंब समद्विभाजक वृत्त के परिकेन्द्र O से होकर जाएगा। ∠BOC और ∠BAC चाप BC द्वारा वृत्त के शेष भाग पर क्रमशः केंद्र पर और एक बिंदु A द्वारा अंतरित कोण हैं। हम यह भी जानते हैं कि एक चाप द्वारा केंद्र पर बनाया गया कोण वृत्त के शेष भाग पर किसी भी बिंदु पर इसके द्वारा बनाए गए कोण का दोगुना होता है।

∠BOC = 2 ∠BAC = 2 ∠A ... (1)

In ΔBOE तथा ΔCOE,

OE = OE (सामान्य)

OB = OC (एक ही वृत्त की त्रिज्या)

∠OEB = ∠OEC (प्रत्येक 90° as OD ⊥ BC)

∴ ΔBOE ≅ ∠COE (RHS सर्वांगसमता नियम)

∠BOE = ∠COE (By CPCT) ... (2)

हालाँकि, ∠BOE + ∠COE = ∠BOC

⇒ ∠BOE +∠BOE = 2 ∠A [समीकरण (1) और (2) का उपयोग करना]

⇒ 2 ∠BOE = 2 ∠A

⇒ ∠BOE = ∠A

∴ ∠BOE = ∠COE = ∠A

भुजा BC का लंब समद्विभाजक और ∠A का कोण समद्विभाजक बिंदु ∠D पर मिलते हैं।

∴ ∠BOD = ∠BOE = ∠A ... (3)

चूँकि AD कोण का समद्विभाजक है ∠A,

∠BAD = ∠A/2

⇒ 2 ∠BAD = ∠A ... (4)

समीकरण (3) और (4) से, हम प्राप्त करते हैं

∠BOD = 2 ∠BAD

यह तभी संभव हो सकता है जब बिंदु BD वृत्त की जीवा हो। इसके लिए बिंदु D वृत्त वृत्त पर स्थित है।

अत: भुजा BC का लम्ब समद्विभाजक और ∠A का कोण समद्विभाजक त्रिभुज ABC के परिवृत्त पर मिलते हैं।

shaalaa.com
चक्रीय चतुर्भुज
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: वृत्त - प्रश्नावली 10.6 (ऐच्छिक) [पृष्ठ २२४]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
अध्याय 10 वृत्त
प्रश्नावली 10.6 (ऐच्छिक) | Q 10. | पृष्ठ २२४

संबंधित प्रश्न

यदि एक चक्रीय चतुर्भुज के विकर्ण उसके शीर्षों से जाने वाले वृत्त के व्यास हों, तो सिद्ध कीजिए कि वह एक आयत है।


यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि वह चक्रीय है।


यदि किसी त्रिभुज की दो भुजाओं को व्यास मानकर वृत्त खींचे जाएँ, तो सिद्ध कीजिए कि इन वृत्तों का प्रतिच्छेद बिन्दु तीसरी भुजा पर स्थित है।


सिद्ध कीजिए कि एक चक्रीय समांतर चतुर्भुज एक आयत होता है।


एक वृत्त की दो समानांतर जीवाओं की लंबाई 6 सेमी और 8 सेमी है। यदि छोटी जीवा केंद्र से 4 सेमी की दूरी पर है, तो केंद्र से दूसरी जीवा की दूरी क्या है?


मान लीजिए कि एक कोण ABC का शीर्ष एक वृत्त के बाहर स्थित है और कोण की भुजाएँ वृत्त के साथ समान जीवाओं AD और CE को प्रतिच्छेद करती हैं। सिद्ध कीजिए कि ∠ABC, जीवाओं AC और DE द्वारा केंद्र में अंतरित कोणों के अंतर के आधे के बराबर है।


ABCD एक चक्रीय चतुर्भुज है, जिसमें ∠A = 90°, ∠B = 70°, ∠C = 95° और ∠D = 105° है।


ABCD एक ऐसा चतुर्भुज है कि A शीर्षों B, C और D से होकर जाने वाले वृत्त का केंद्र है। सिद्ध कीजिए कि ∠CBD + ∠CDB = `1/2` ∠BAD है।


यदि किसी समद्विबाहु त्रिभुज के आधार के समांतर कोई रेखा उसकी बराबर भुजाओं को प्रतिच्छेद करने के लिए खींची जाए, तो सिद्ध कीजिए कि इस प्रकार बना चतुर्भुज चक्रीय होता है।


एक चतुर्भुज ABCD एक वृत्त के अंतर्गत इस प्रकार है कि AB वृत्त का व्यास है और ∠ADC = 130° है। ∠BAC ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×