हिंदी

Match the items of Column I and Column II on the basis of data given below: EF2F-Θ = 2.87 V, ELi+Li-Θ = − 3.5V, EAu3+AuΘ = 1.4 V, EBr2Br-Θ = 1.09 V Column I Column II (i) F2 (a) metal is the stronges - Chemistry

Advertisements
Advertisements

प्रश्न

Match the items of Column I and Column II on the basis of data given below:

`E_("F"_2//"F"^-)^Θ` = 2.87 V, `"E"_(("Li"^(+))//("Li"^-))^Θ` = − 3.5V, `"E"_(("Au"^(3+))//("Au"))^Θ` = 1.4 V, `"E"_(("Br"_(2))//("Br"^-))^Θ` = 1.09 V

Column I Column II
(i) F2 (a) metal is the strongest reducing agent
(ii) Li (b) metal ion which is the weakest oxidising agent
(iii) Au3+ (c) non metal which is the best oxidising agent
(iv) Br (d) unreactive metal
(v) Au (e) anion that can be oxidised by Au3+
(vi) Li+ (f) anion which is the weakest reducing agent
(vii) F (g) metal ion which is an oxidising agent
जोड़ियाँ मिलाइएँ

उत्तर

Column I Column II
(i) F2 (c) non metal which is the best oxidising agent
(ii) Li (a) metal is the strongest reducing agent
(iii) Au3+ (g) metal ion which is an oxidising agent
(iv) Br (e) anion that can be oxidised by Au3+
(v) Au (d) unreactive metal
(vi) Li+ (b) metal ion which is the weakest oxidising agent
(vii) F (f) anion which is the weakest reducing agent
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Electrochemistry - Exercises [पृष्ठ ४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Chemistry [English] Class 12
अध्याय 3 Electrochemistry
Exercises | Q IV. 55. | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Resistance of conductivity cell filled with 0.1 M KCl solution is 100 ohms. If the resistance of the same cell when filled with 0.02 M KCl solution is 520 ohms, calculate the conductivity and molar conductivity of 0.02 M KCl solution. [Given: Conductivity of 0.1 M KCl solution is 1.29 S m-1 .]


The conductivity of 0.001 mol L-1 solution of CH3COOH is 3.905× 10-5 S cm-1. Calculate its molar conductivity and degree of dissociation (α) Given λ°(H+)= 349.6 S cm2 mol-1 and λ°(CH3COO)= 40.9S cm2mol-1.


Define limiting molar conductivity.


The conductivity of 0.02M AgNO3 at 25°C is 2.428 x 10-3 Ω-1 cm-1. What is its molar
conductivity?


Which of the statements about solutions of electrolytes is not correct?


Molar conductivity of ionic solution depends on:

(i) temperature.

(ii) distance between electrodes.

(iii) concentration of electrolytes in solution.

(iv) surface area of electrodes.


Assertion: Copper sulphate can be stored in zinc vessel.

Reason: Zinc is less reactive than copper.


Assertion (A): Molar conductivity decreases with increase in concentration.

Reason (R): When concentration approaches zero, the molar conductivity is known as limiting molar conductivity.


The following questions are case-based questions. Read the passage carefully and answer the questions that follow:

Rahul set up an experiment to find the resistance of aqueous KCl solution for different concentrations at 298 K using a conductivity cell connected to a Wheatstone bridge. He fed the Wheatstone bridge with a.c. power in the audio frequency range 550 to 5000 cycles per second. Once the resistance was calculated from the null point, he also calculated the conductivity K and molar conductivity ∧m and recorded his readings in tabular form.
S. No. Conc.
(M)
k S cm−1 m S cm2 mol−1
1. 1.00 111.3 × 10−3 111.3
2. 0.10 12.9 × 10−3 129.0
3. 0.01 1.41 × 10−3 141.0

Answer the following questions:

(a) Why does conductivity decrease with dilution? (1)

(b) If `∧_"m"^0` of KCl is 150.0 S cm2 mol−1, calculate the degree of dissociation of 0.01 M KCI. (1)

(c) If Rahul had used HCl instead of KCl then would you expect the ∧m values to be more or less than those per KCl for a given concentration? Justify. (2)

OR

(c) Amit a classmate of Rahul repeated the same experiment with CH3COOH solution instead of KCl solution. Give one point that would be similar and one that would be different in his observations as compared to Rahul. (2)


The resistance of a conductivity cell with a 0.1 M KCl solution is 200 ohm. When the same cell is filled with a 0.02 M NaCl solution, the resistance is 1100 ohm. If the conductivity of 0.1 M KCl solution is 0.0129 ohm-1 cm-1, calculate the cell constant and molar conductivity of 0.02 M NaCl solution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×