हिंदी

निम्नलिखित आकृति में, O वृत्त का केंद्र है और ∠BCO = 30° है। x और y ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित आकृति में, O वृत्त का केंद्र है और ∠BCO = 30° है। x और y ज्ञात कीजिए।

आकृति
योग

उत्तर

दिया गया है, O वृत्त का केंद्र है और ∠BCO = 30° है। दी गई आकृति में OB और AC को मिलाइए।


ΔBOC में, CO = BO  ...[दोनों वृत्त की त्रिज्या हैं।]

∴ ∠OBC = ∠OCB = 30°  ...[समान भुजाओं के सम्मुख कोण बराबर होते हैं।]

∴ ∠BOC = 180° – (∠OBC + ∠OCE)  ...[त्रिभुज के कोण योग गुण द्वारा]

= 180° – (30° + 30°)

= 120°

∠BOC = 2∠BAC

हम जानते हैं कि, एक वृत्त में, एक चाप द्वारा केंद्र पर बनाया गया कोण वृत्त के शेष भाग पर बनाए गए कोण का दुगुना होता है।

∴ `∠BAC = 120^circ/2 = 60^circ`

साथ ही, ∠BAE = ∠CAE = 30°  ...[AE कोण A का कोण समद्विभाजक है।]

⇒ ∠BAE = x = 30°

∠ABE में, ∠BAE + ∠EBA + ∠AEB = 180°  ...[त्रिभुज के कोण योग गुण द्वारा]

⇒ 30° + ∠EBA + 90° = 180°

∴ ∠EBA = 180° – (90° + 30°)

= 180° – 120°

= 60°

अब, ∠EBA = 60°

⇒ ∠ABD + y = 60°

⇒ `1/2 xx ∠AOD + y = 60^circ`  ...[एक वृत्त में, एक चाप द्वारा केंद्र पर बनाया गया कोण वृत्त के शेष भाग पर बनाए गए कोण का दुगुना होता है।]

⇒ `90^circ/2 + y = 60^circ`  ...[∵ ∠AOD = 90°, दिया गया है।]

⇒ 45° + y = 60°

⇒ y = 60° – 45°

∴ y = 15°

shaalaa.com
एक वृत्त के चाप द्वारा अंतरित कोण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: वृत्त - प्रश्नावली 10.4 [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 10 वृत्त
प्रश्नावली 10.4 | Q 13. | पृष्ठ १०८

संबंधित प्रश्न

आकृति में, केंद्र O वाले एक वृत्त पर तीन बिन्दु A, B और C इस प्रकार हैं कि ∠BOC = 30तथा ∠AOB = 60है। यदि चाप ABC के अतिरिक्त वृत्त पर D एक बिंदु है, तो ∠ADC ज्ञात कीजिए।


यदि एक वृत्त के चाप AXB और CYD सर्वांगसम हैं तो AB और CD का अनुपात ज्ञात कीजिए।


AB और AC एक वृत्त की दो बराबर जीवाएँ हैं। सिद्ध कीजिए कि ∠BAC का समद्विभाजक वृत्त के केंद्र से होकर जाता है।


किसी वृत्त की एक जीवा उसकी त्रिज्या के बराबर है। इस जीवा द्वारा दीर्घ वृत्तखंड में किसी बिंदु पर अंतरित कोण ज्ञात कीजिए। 


निम्नलिखित आकृति में, ∠ADC = 130° और जीवा BC = जीवा BE है। ∠CBE ज्ञात कीजिए। 


निम्नलिखित आकृति में, AOB वृत्त का व्यास है तथा C, D और E अर्धवृत्त पर स्थित कोई तीन बिंदु हैं। ∠ACD + ∠BED का मान ज्ञात कीजिए।


निम्नलिखित आकृति में, ∠OAB = 30° और ∠OCB = 57° है। ∠BOC और ∠AOC ज्ञात कीजिए।


सिद्ध कीजिए कि एक त्रिभुज के किसी कोण का समद्विभाजक और उसकी सम्मुख भुजा का लंब समद्विभाजक, यदि प्रतिच्छेद करते हैं तो, उस त्रिभुज के परिवृत्त पर प्रतिच्छेद करते हैं।


यदि ABC किसी वृत्त के अंतर्गत एक समबाहु त्रिभुज है तथा P लघु चाप BC पर स्थित कोई बिंदु है, जो B या C के संपाती नहीं है, तो सिद्ध कीजिए कि PA कोण BPC का समद्विभाजक हैं।


एक वृत्त की दो बराबर AB और CD जीवाएँ बढ़ाने पर बिंदु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि PB = PD है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×