Advertisements
Advertisements
प्रश्न
निम्नलिखित वर्गसमीकरण हल करो।
m2 + 5m + 5 = 0
उत्तर
m2 + 5m + 5 = 0
यहाँ a = 1, b = 5 तथा c = 5 ....(am2 + bm + c = 0 से तुलना करने पर)
∴ b2 − 4ac = (5)2 − 4 × 1 × 5 = 25 − 20 = 5
∴ x = `(-"b" ± sqrt("b"^2 - 4"ac"))/(2"a")`
= `(-5 ± sqrt5)/(2 xx 1)`
∴ x = `(-5 + sqrt5)/2` अथवा x = `(-5 - sqrt5)/2`
∴ वर्गसमीकरण के मूल `(-5 + sqrt5)/2` तथा `(-5 - sqrt5)/2` हैं।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित वर्ग समीकरणों की मानक रूप से तुलना कर a, b, c मान लिखें।
x2 − 7x + 5 = 0
निम्नलिखित वर्ग समीकरणों की मानक रूप से तुलना कर a, b, c मान लिखें।
y2 = 7y
निम्नलिखित वर्गसमीकरण सूत्र विधि से हल करें।
3m2 + 2m − 7 = 0
निम्नलिखित वर्गसमीकरण सूत्र विधि से हल करें।
5m2 − 4m − 2 = 0
निम्नलिखित वर्गसमीकरण सूत्र विधि से हल करें।
`"y"^2 + 1/3"y" = 2`
`"x"^2 + 2sqrt3"x" + 3 = 0` इस वर्गसमीकरण को सूत्र की सहायता से निम्न प्रवाह आकृति मेंं दी गई जानकारी के अनुसार हल करें।
हल:
निम्नलिखित वर्गसमीकरण हल करो।
(2x + 3)2 = 25
निम्नलिखित वर्गसमीकरण हल करो।
5m2 + 2m + 1 = 0
निम्नलिखित वर्गसमीकरण हल करो।
x2 − 4x − 3 = 0
यदि वर्ग समीकरण kx2 – 10x + 3 = 0 का एक मूल 3 है, तो k का मान ज्ञात करने के लिए निम्न कृति पूर्ण करो:
कृति:
kx2 – 10x + 3 = 0 इस वर्ग समीकरण का एक मूल 3 है।
x = `square` यह मान उपरोक्त समीकरण में रखने पर,
k`square`2 – 10 × `square` + 3 = 0
∴ `square` – 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`