हिंदी

Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides of the triangle.

योग

उत्तर


Let a right triangle BAC in which ∠A is right angle and AC = y, AB = x.

Three equilateral triangles ΔAEC, ΔAFB and ΔCBD are drawn on the three sides of ΔABC.

Again, let area of triangles made on AC, AB and BC are A1, A2 and A3, respectively.

To prove: A3 = A1 + A2 

Proof: In ΔCAB,

By pythagoras theorem,

BC2 = AC2 + AB2

⇒ BC2 = y2 + x2

⇒ BC = `sqrt(y^2 + x^2)`

We know that,

Area of an equilateral triangle = `sqrt(3)/4 ("Side")^2`

∴ Area of equilateral ΔAEC,

A1 = `sqrt(3)/4 ("AC")^2`

⇒ A1 = `sqrt(3)/4 y^2`   ...(i)

And area of equilateral ΔAFB,

A2 = `sqrt(3)/4 ("AB")^2`

= `(sqrt(3)x^2)/4`   ...(ii)

Area of equilateral ΔCBD,

A3 = `sqrt(3)/4 ("CB")^2`

= `sqrt(3)/4 (y^2 + x^2)`

= `sqrt(3)/4 y^2 + sqrt(3)/4 x^2`

= A1 + A2   ...[From equations (i) and (ii)]

⇒ A3 = A1 + A2

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Triangles - Exercise 6.4 [पृष्ठ ७६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 6 Triangles
Exercise 6.4 | Q 18 | पृष्ठ ७६

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×