Advertisements
Advertisements
प्रश्न
∆RST मध्ये, ∠S = 90°, ∠T = 30°, RT = 12 सेमी, तर RS काढा.
उत्तर
ΔRST मध्ये,
∠S = 90°, ∠T = 30°
∴ ∠R = 60° ..................(उरलेल्या कोनाचे माप)
∴ ΔRST 30° - 60° - 90° मापाचा त्रिकोण आहे.
∴ RS = `1/2 xx "RT"` ..........(30° कोनासमोरील बाजू)
= `1/2 xx 12`
RS = 6 सेमी
APPEARS IN
संबंधित प्रश्न
आकृती मधील ΔPSR मध्ये दिलेल्या माहितीवरून RP आणि PS काढा.
ΔABC मध्ये, AB = `6sqrt3` सेमी, AC = 12 सेमी आणि BC = 6 सेमी तर ∠A चे माप किती?
एका समभुज त्रिकोणाची बाजू 2a आहे, तर त्याची उंची काढा.
ΔRST मध्ये, ∠S = 90°, ∠T = 30°, RT = 12 सेमी तर RS व ST काढा.
ΔABC हा समभुज त्रिकोण आहे. पाया BC वर P बिंदू असा आहे की PC = `1/ 3` BC, जर AB = 6 सेमी तर AP काढा.
सोबतच्या आकृतीत, ∆ABC मध्ये, AB ⊥ BC, AB = BC, तर ∠A चे माप किती?
सोबतच्या आकृतीत, ∆ABC मध्ये, AB = BC, AC = `2sqrt2`, ∠ABC = 90°. तर AB ची लांबी किती?
बाजूच्या आकृतीवरून जर AQ = 8 सेमी, तर AB ची लांबी काढा.
सोबतच्या आकृतीत, ∆ABC मध्ये, ∠ABC = 90°, ∠CAB = 30° AC = 14, तर AB व BC काढण्यासाठी खालील कृती पूर्ण करा.
कृती: ∆ABC मध्ये, ∠ABC = 90°, ∠CAB = 30° यावरून, ∠BCA = `square`
30° – 60° – 90° त्रिकोणाच्या प्रमेयानुसार,
`square = 1/2 "AC" व square = sqrt3/2 "AC"`.
∴ BC = `1/2 xx square` व AB = `sqrt3/2 xx 14`
BC = 7 व AB = `7sqrt3`.
सोबतच्या आकृतीत, LK = `6sqrt2` तर MK, ML, MN काढा.