Advertisements
Advertisements
प्रश्न
Select the correct answer from the given alternative:
If f(x) `{:( = x^2 + sin x + 1, "for" x ≤ 0),(= x^2 - 2x + 1, "for" x ≤ 0):}` then
विकल्प
f is continuous at x = 0, but not differentiable at x = 0
f is neither continuous nor differentiable at x = 0
f is not continuous at x = 0, but differentiable at x = 0
f is both continuous and differentiable at x = 0
उत्तर
f is continuous at x = 0, but not differentiable at x = 0
Explanation;
f(x) `{:( = x^2 + sin x + 1,"," x ≤ 0),(= x^2 - 2x + 1,"," x ≤ 0):}`
`lim_(x -> 0^-) "f"(x) = lim_(x -> 0^-) (x^2 + sinx + 1)` = 0 + 0 + 1 = 1
`lim_(x -> 0^+) "f"(x) = lim_(x -> 0^+) (x^2 - 2x + 1)` = 0 – 0 + 1 = 1
∴ f is continuous at x = 0
Lf'(0) = `lim_("h" -> 0^-) ("f"(0 + "h") - "f"(0))/"h"`
= `lim_("h" -> 0^-) ("h"^2 + sin "h" + 1 - (0 + 0 + 1))/"h"`
= `lim_("h" -> 0^-) ("h" + sin"h"/"h")` = 0 + 1 = 1
Rf'(0) = `lim_("h" -> 0^+) ("f"(0 + "h") - "f"(0))/"h"`
= `lim_("h" -> 0^+) ("h"^2 - 2"h" + 1 - 1)/"h"`
= `lim_("h" -> 0) ("h" - 2)`
= – 2
∵ Rf'(0) ≠ Lf'(0)
∴ f is not differentiable at x = 0.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function w.r.t. x.:
x–9
Find the derivative of the following functions w. r. t. x.:
`x^(3/2)`
Find the derivative of the following function w. r. t. x.:
`7xsqrt x`
Differentiate the following w. r. t. x.: x5 + 3x4
Differentiate the following w. r. t. x. : x3 log x
Differentiate the following w. r. t. x. : `x^(5/2) e^x`
Differentiate the following w. r. t. x. : ex log x
Differentiate the following w. r. t. x. : x3 .3x
Find the derivative of the following w. r. t. x by using method of first principle:
x2 + 3x – 1
Find the derivative of the following w. r. t. x by using method of first principle:
sin (3x)
Find the derivative of the following w. r. t. x by using method of first principle:
log (2x + 5)
Find the derivative of the following w. r. t. x by using method of first principle:
tan (2x + 3)
Find the derivative of the following w. r. t. x by using method of first principle:
sec (5x − 2)
Find the derivative of the following w. r. t. x by using method of first principle:
`x sqrt(x)`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`sqrt(2x + 5)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
tan x at x = `pi/4`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`2^(3x + 1)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
log(2x + 1) at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`"e"^(3x - 4)` at x = 2
Show that f(x) = x2 is continuous and differentiable at x = 0
Discuss the continuity and differentiability of f(x) = x |x| at x = 0
Discuss the continuity and differentiability of f(x) at x = 2
f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]
Test the continuity and differentiability of f(x) `{:(= 3 x + 2, "if" x > 2),(= 12 - x^2, "if" x ≤ 2):}}` at x = 2
Select the correct answer from the given alternative:
If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =
Select the correct answer from the given alternative:
If f(x) `{:(= 2x + 6, "for" 0 ≤ x ≤ 2),(= "a"x^2 + "b"x, "for" 2 < x ≤4):}` is differentiable at x = 2 then the values of a and b are
Select the correct answer from the given alternative:
If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =
Find the values of p and q that make function f(x) differentiable everywhere on R
f(x) `{:( = 3 - x"," , "for" x < 1),(= "p"x^2 + "q"x",", "for" x ≥ 1):}`
Determine all real values of p and q that ensure the function
f(x) `{:( = "p"x + "q"",", "for" x ≤ 1),(= tan ((pix)/4)",", "for" 1 < x < 2):}` is differentiable at x = 1
Discuss whether the function f(x) = |x + 1| + |x – 1| is differentiable ∀ x ∈ R
Test whether the function f(x) `{:(= 2x - 3",", "for" x ≥ 2),(= x - 1",", "for" x < 2):}` is differentiable at x = 2