हिंदी

Show that If We Connect the Smaller and the Outer Sphere by a Wire, the Charge Q on the Former Will Always Flow to the Latter, Independent of How Large the Charge Q Is. - Physics

Advertisements
Advertisements

प्रश्न

Show that if we connect the smaller and the outer sphere by a wire, the charge q on the former will always flow to the latter, independent of how large the charge Q is.

उत्तर

To calculate the electric field intensity at any point P', where point P' lies outside of the spherical shell, imagine a Gaussian surface with centre O and radius x', as shown in the figure given above.
According to Gauss's theorem,

` E' xx 4πx^'2 = (q+Q)/ε_0 `

⇒`E = (q+Q)/(4πx'^ 2 )`

As the charge always resides only on the outer surface of a conduction shell, the charge flows essentially from the sphere to the shell when they are connected by a wire. It does not depend on the magnitude and sign of charge Q.

shaalaa.com
Electric Field - Electric Field Due to a System of Charges
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Foreign Set 2

संबंधित प्रश्न

A hollow cylindrical box of length 1 m and area of cross-section 25 cm2 is placed in a three dimensional coordinate system as shown in the figure. The electric field in the region is given by `vecE = 50xhati` where E is NC­−1 and x is in metres. Find

(i) Net flux through the cylinder.

(ii) Charge enclosed by the cylinder.


A hollow cylindrical box of length 0.5 m and area of cross-section 25 cm2 is placed in a three dimensional coordinate system as shown in the figure. The electric field in the region is given by `vecE = 20 xhati`  where E is NC­−1 and x is in metres. Find

(i) Net flux through the cylinder.

(ii) Charge enclosed by the cylinder.


The electric field at the origin is along the positive x-axis. A small circle is drawn with the centre at the origin, cutting the axes at points A, B, C and D with coordinates (a, 0), (0, a), (−a, 0), (0, −a), respectively. Out of the points on the periphery of the circle, the potential is minimum at  


A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1. How much is the work done by the electric force on the particle during this period?


12 J of work has to be done against an existing electric field to take a charge of 0.01 C from A to B. How much is the potential difference  VB − VA


A charged particle is free to move in an electric field. It will travel ______.

For distance far away from centre of dipole the change in magnitude of electric field with change in distance from the centre of dipole is ______.

Two identical blocks are kept on a frictionless horizontal table connected by a spring of stiffness k and of original length l0. A total charge Q is distributed on the block such that maximum elongation of spring at equilibrium is equal to x. Value of Q is ______.


The electric field intensity produced by the radiations coming from 100 W bulb at 3 m distance is E. The electric field intensity produced by the radiations coming from 50 W bulb at the same distance is:


The Electric field at a point is ______.

  1. always continuous.
  2. continuous if there is no charge at that point.
  3. discontinuous only if there is a negative charge at that point.
  4. discontinuous if there is a charge at that point.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×