рд╣рд┐рдВрджреА

The Areas of Two Similar Triangles Are 81 Cm2 and 49 Cm2 Respectively. Find the Ratio of Their Corresponding Heights. What is the Ratio of Their Corresponding Medians? - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

The areas of two similar triangles are 81 cm2 and 49 cm2 respectively. Find the ratio of their corresponding heights. What is the ratio of their corresponding medians?

рдЙрддреНрддрд░

We have,

ΔABC ~ ΔPQR

Area (ΔABC) = 81 cm2,

Area (ΔPQR) = 49 cm2

And AD and PS are the altitudes

By area of similar triangle theorem

`("Area"(triangleABC))/("Area"(trianglePQR))="AB"^2/"PQ"^2`

`rArr81/49="AB"^2/"PQ"^2`

`rArr9/7="AB"/"PQ"`                          ….(i) [Taking square root]

ЁЭР╝ЁЭСЫ ΔABD and ΔPQS

∠B = ∠Q                              [ΔABC ~ ΔPQR]

∠ ADB = ∠PSQ                     [Each 90°]

Then, ΔABD ~ ΔPQS            [By AA similarity]

`therefore"AB"/"PQ"="AD"/"PS"`               …(ii) [Corresponding parts of similar Δ are proportional]

Compare (1) and (2)

`"AD"/"PS"=9/7`

∴ Ratio of altitudes = 9/7

Since, the ratio of the area of two similar triangles is equal to the ratio of the squares of the squares of their corresponding altitudes and is also equal to the squares of their corresponding medians.

Hence, ratio of altitudes = Ratio of medians = 9 : 7

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 7: Triangles - Exercise 7.6 [рдкреГрд╖реНрда репрел]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 7 Triangles
Exercise 7.6 | Q 3 | рдкреГрд╖реНрда репрел

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [1]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×