हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Distance Moved by a Particle in Simple Harmonic Motion in One Time Period is - Physics

Advertisements
Advertisements

प्रश्न

The distance moved by a particle in simple harmonic motion in one time period is

विकल्प

  • A

  • 2A

  • 4A

  • zero

MCQ

उत्तर

4A

In an oscillation, the particle goes from one extreme position to other extreme position that lies on the other side of mean position and then returns back to the initial extreme position. Thus, total distance moved by particle is,
2A + 2A = 4A.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - MCQ [पृष्ठ २५०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
MCQ | Q 5 | पृष्ठ २५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The average displacement over a period of S.H.M. is ______.

(A = amplitude of S.H.M.)


Assuming the expression for displacement of a particle starting from extreme position, explain graphically the variation of velocity and acceleration w.r.t. time.


State the differential equation of linear simple harmonic motion.


In measuring time period of a pendulum, it is advised to measure the time between consecutive passage through the mean position in the same direction. This is said to result in better accuracy than measuring time between consecutive passage through an extreme position. Explain.


Can a pendulum clock be used in an earth-satellite?


The displacement of a particle in simple harmonic motion in one time period is


A particle moves on the X-axis according to the equation x = A + B sin ωt. The motion is simple harmonic with amplitude


A pendulum clock keeping correct time is taken to high altitudes,


A pendulum clock giving correct time at a place where g = 9.800 m/s2 is taken to another place where it loses 24 seconds during 24 hours. Find the value of g at this new place.


A simple pendulum of length 40 cm is taken inside a deep mine. Assume for the time being that the mine is 1600 km deep. Calculate the time period of the pendulum there. Radius of the earth = 6400 km.


A closed circular wire hung on a nail in a wall undergoes small oscillations of amplitude 20 and time period 2 s. Find (a) the radius of the circular wire, (b) the speed of the particle farthest away from the point of suspension as it goes through its mean position, (c) the acceleration of this particle as it goes through its mean position and (d) the acceleration of this particle when it is at an extreme position. Take g = π2 m/s2.


A particle is subjected to two simple harmonic motions given by x1 = 2.0 sin (100π t) and x2 = 2.0 sin (120 π t + π/3), where x is in centimeter and t in second. Find the displacement of the particle at (a) = 0.0125, (b) t = 0.025.


The length of a second’s pendulum on the surface of the Earth is 0.9 m. The length of the same pendulum on the surface of planet X such that the acceleration of the planet X is n times greater than the Earth is


What is meant by simple harmonic oscillation? Give examples and explain why every simple harmonic motion is a periodic motion whereas the converse need not be true.


Describe Simple Harmonic Motion as a projection of uniform circular motion.


A spring is stretched by 5 cm by a force of 10 N. The time period of the oscillations when a mass of 2 kg is suspended by it is ______.


A weightless rigid rod with a small iron bob at the end is hinged at point A to the wall so that it can rotate in all directions. The rod is kept in the horizontal position by a vertical inextensible string of length 20 cm, fixed at its midpoint. The bob is displaced slightly, perpendicular to the plane of the rod and string. The period of small oscillations of the system in the form `(pix)/10` is ______ sec. and the value of x is ______.

(g = 10 m/s2)

 


Which of the following expressions corresponds to simple harmonic motion along a straight line, where x is the displacement and a, b, and c are positive constants?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×