हिंदी

State the Differential Equation of Linear Simple Harmonic Motion. - Physics

Advertisements
Advertisements

प्रश्न

State the differential equation of linear simple harmonic motion.

उत्तर

State the differential equation of linear S.H.M.

When a particle performs linear SHM. the force acting on the particle is always directed towards the mean position. The magnitude of the force is directly proportional to the magnitude of the displacement of the particle from the mean position. Thus, if `vecF`  is the force acting on the particle when its displacement from the mean position is `vecx`

∴ `vecF = -kvecx`   ....(1)

where the constant k, the force per unit displacement, is called the force constant. The minus sign indicates that the force and the displacement are oppositely directed.

The velocity of the particle is `(dvecx)/(dt)` and its acceleration is `(d^2vecx)/(dt^2)`

Let m be the mass of the particle

Force = mass x acceleration

∴ vecF = m `(d^2vecx)/(dt^2)`

Hence from Eq. (1), m `(d^2vecx)/(dt^2) = -k vecx`

`:. (d^2vecx)/(dt^2) + k/m vecx = 0`    ....(2)

This is the differential equation of linear S.H.M.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A particle in S.H.M. has a period of 2 seconds and amplitude of 10 cm. Calculate the acceleration when it is at 4 cm from its positive extreme position.


Define phase of S.H.M.


Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?

(a) a = 0.7x

(b) a = –200x2

(c) a = –10x

(d) a = 100x3


A particle executes S.H.M. with a period of 10 seconds. Find the time in which its potential energy will be half of its total energy.


A particle executing simple harmonic motion comes to rest at the extreme positions. Is the resultant force on the particle zero at these positions according to Newton's first law?


The energy of system in simple harmonic motion is given by \[E = \frac{1}{2}m \omega^2 A^2 .\] Which of the following two statements is more appropriate?
(A) The energy is increased because the amplitude is increased.
(B) The amplitude is increased because the energy is increased.


A student says that he had applied a force \[F = - k\sqrt{x}\] on a particle and the particle moved in simple harmonic motion. He refuses to tell whether k is a constant or not. Assume that he was worked only with positive x and no other force acted on the particle.


The time period of a particle in simple harmonic motion is equal to the smallest time between the particle acquiring a particular velocity \[\vec{v}\] . The value of v is


The distance moved by a particle in simple harmonic motion in one time period is


Select the correct statements.
(a) A simple harmonic motion is necessarily periodic.
(b) A simple harmonic motion is necessarily oscillatory.
(c) An oscillatory motion is necessarily periodic.
(d) A periodic motion is necessarily oscillatory.


Which of the following quantities are always negative in a simple harmonic motion?

(a) \[\vec{F} . \vec{a} .\]

(b) \[\vec{v} . \vec{r} .\]

(c) \[\vec{a} . \vec{r} .\]

(d)\[\vec{F} . \vec{r} .\]


Which of the following quantities are always positive in a simple harmonic motion?


An object is released from rest. The time it takes to fall through a distance h and the speed of the object as it falls through this distance are measured with a pendulum clock. The entire apparatus is taken on the moon and the experiment is repeated
(a) the measured times are same
(b) the measured speeds are same
(c) the actual times in the fall are equal
(d) the actual speeds are equal


A particle executes simple harmonic motion with an amplitude of 10 cm and time period 6 s. At t = 0 it is at position x = 5 cm going towards positive x-direction. Write the equation for the displacement x at time t. Find the magnitude of the acceleration of the particle at t = 4 s.


A pendulum clock giving correct time at a place where g = 9.800 m/s2 is taken to another place where it loses 24 seconds during 24 hours. Find the value of g at this new place.


A simple pendulum of length 40 cm is taken inside a deep mine. Assume for the time being that the mine is 1600 km deep. Calculate the time period of the pendulum there. Radius of the earth = 6400 km.


Assume that a tunnel is dug along a chord of the earth, at a perpendicular distance R/2 from the earth's centre where R is the radius of the earth. The wall of the tunnel is frictionless. (a) Find the gravitational force exerted by the earth on a particle of mass mplaced in the tunnel at a distance x from the centre of the tunnel. (b) Find the component of this force along the tunnel and perpendicular to the tunnel. (c) Find the normal force exerted by the wall on the particle. (d) Find the resultant force on the particle. (e) Show that the motion of the particle in the tunnel is simple harmonic and find the time period.


A simple pendulum of length 1 feet suspended from the ceiling of an elevator takes π/3 seconds to complete one oscillation. Find the acceleration of the elevator.


A uniform disc of mass m and radius r is suspended through a wire attached to its centre. If the time period of the torsional oscillations be T, what is the torsional constant of the wire?


A particle is subjected to two simple harmonic motions given by x1 = 2.0 sin (100π t) and x2 = 2.0 sin (120 π t + π/3), where x is in centimeter and t in second. Find the displacement of the particle at (a) = 0.0125, (b) t = 0.025.


A particle is subjected to two simple harmonic motions, one along the X-axis and the other on a line making an angle of 45° with the X-axis. The two motions are given by x = x0 sin ωt and s = s0 sin ωt. Find the amplitude of the resultant motion.


The length of a second’s pendulum on the surface of the Earth is 0.9 m. The length of the same pendulum on the surface of planet X such that the acceleration of the planet X is n times greater than the Earth is


Define the frequency of simple harmonic motion.


What is meant by simple harmonic oscillation? Give examples and explain why every simple harmonic motion is a periodic motion whereas the converse need not be true.


Motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lower point is ______.

  1. simple harmonic motion.
  2. non-periodic motion.
  3. periodic motion.
  4. periodic but not S.H.M.

The velocities of a particle in SHM at positions x1 and x2 are v1 and v2 respectively, its time period will be ______.


Assume there are two identical simple pendulum clocks. Clock - 1 is placed on the earth and Clock - 2 is placed on a space station located at a height h above the earth's surface. Clock - 1 and Clock - 2 operate at time periods 4 s and 6 s respectively. Then the value of h is ______.

(consider the radius of earth RE = 6400 km and g on earth 10 m/s2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×