हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Uniform Disc of Mass M and Radius R is Suspended Through a Wire Attached to Its Centre. - Physics

Advertisements
Advertisements

प्रश्न

A uniform disc of mass m and radius r is suspended through a wire attached to its centre. If the time period of the torsional oscillations be T, what is the torsional constant of the wire?

योग

उत्तर

It is given that:
Mass of disc = m
Radius of disc = r
The time period of torsional oscillations is T.
 Moment of inertia of the disc at the centre, I \[= \frac{m r^2}{2}\]

Time period of torsional pendulum\[\left( T \right)\] is given by,

\[T = 2\pi\sqrt{\frac{I}{k}}  \]

where I is the moment of inertia, and
           k is the torsional constant.

On substituting the value of moment of inertia in the expression for time period T, we have:

\[T = 2\pi\sqrt{\frac{m r^2}{2k}}\] 

\[\text { On  squaring  both  the  sides,   we  get: }\] 

\[ T^2  = 4 \pi^2 \frac{m r^2}{2k} = 2 \pi^2 \frac{m r^2}{k}\] 

\[ \Rightarrow 2 \pi^2 m r^2  = k T^2 \] 

\[ \Rightarrow k = \frac{2 \pi^2 m r^2}{T^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 53 | पृष्ठ २५५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Define phase of S.H.M.


Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?

(a) a = 0.7x

(b) a = –200x2

(c) a = –10x

(d) a = 100x3


Hence obtain the expression for acceleration, velocity and displacement of a particle performing linear S.H.M.


A particle executing simple harmonic motion comes to rest at the extreme positions. Is the resultant force on the particle zero at these positions according to Newton's first law?


A particle executes simple harmonic motion Let P be a point near the mean position and Q be a point near an extreme. The speed of the particle at P is larger than the speed at Q. Still the particle crosses Pand Q equal number of times in a given time interval. Does it make you unhappy?


The displacement of a particle in simple harmonic motion in one time period is


Which of the following quantities are always zero in a simple harmonic motion?
(a) \[\vec{F} \times \vec{a} .\]

(b) \[\vec{v} \times \vec{r} .\]

(c) \[\vec{a} \times \vec{r} .\]

(d) \[\vec{F} \times \vec{r} .\]


For a particle executing simple harmonic motion, the acceleration is proportional to


An object is released from rest. The time it takes to fall through a distance h and the speed of the object as it falls through this distance are measured with a pendulum clock. The entire apparatus is taken on the moon and the experiment is repeated
(a) the measured times are same
(b) the measured speeds are same
(c) the actual times in the fall are equal
(d) the actual speeds are equal


A pendulum having time period equal to two seconds is called a seconds pendulum. Those used in pendulum clocks are of this type. Find the length of a second pendulum at a place where = π2 m/s2.


A pendulum clock giving correct time at a place where g = 9.800 m/s2 is taken to another place where it loses 24 seconds during 24 hours. Find the value of g at this new place.


A simple pendulum fixed in a car has a time period of 4 seconds when the car is moving uniformly on a horizontal road. When the accelerator is pressed, the time period changes to 3.99 seconds. Making an approximate analysis, find the acceleration of the car.


A closed circular wire hung on a nail in a wall undergoes small oscillations of amplitude 20 and time period 2 s. Find (a) the radius of the circular wire, (b) the speed of the particle farthest away from the point of suspension as it goes through its mean position, (c) the acceleration of this particle as it goes through its mean position and (d) the acceleration of this particle when it is at an extreme position. Take g = π2 m/s2.


A particle is subjected to two simple harmonic motions of same time period in the same direction. The amplitude of the first motion is 3.0 cm and that of the second is 4.0 cm. Find the resultant amplitude if the phase difference between the motions is (a) 0°, (b) 60°, (c) 90°.


The length of a second’s pendulum on the surface of the Earth is 0.9 m. The length of the same pendulum on the surface of planet X such that the acceleration of the planet X is n times greater than the Earth is


Consider a simple pendulum of length l = 0.9 m which is properly placed on a trolley rolling down on a inclined plane which is at θ = 45° with the horizontal. Assuming that the inclined plane is frictionless, calculate the time period of oscillation of the simple pendulum.


A spring is stretched by 5 cm by a force of 10 N. The time period of the oscillations when a mass of 2 kg is suspended by it is ______.


The displacement of a particle varies with time according to the relation y = a sin ωt + b cos ωt.


A body having specific charge 8 µC/g is resting on a frictionless plane at a distance 10 cm from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of 100 V/m is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be ______ s.


Which of the following expressions corresponds to simple harmonic motion along a straight line, where x is the displacement and a, b, and c are positive constants?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×