हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Simple Pendulum Fixed in a Car Has a Time Period of 4 Seconds When the Car is Moving Uniformly on a Horizontal Road. When the Accelerator is Pressed, - Physics

Advertisements
Advertisements

प्रश्न

A simple pendulum fixed in a car has a time period of 4 seconds when the car is moving uniformly on a horizontal road. When the accelerator is pressed, the time period changes to 3.99 seconds. Making an approximate analysis, find the acceleration of the car.

योग

उत्तर

It is given that:
When the car is moving uniformly, time period of simple pendulum, T = 4.0 s
As the accelerator is pressed, new time period of the pendulum, T' = 3.99 s
Time period of simple pendulum, when the car is moving uniformly on a horizontal road is given by,

\[T = 2\pi\sqrt{\frac{l}{g}}\] 

\[ \Rightarrow 4 = 2\pi\sqrt{\frac{l}{g}}\]

Let the acceleration of the car be a.
The time period of pendulum, when the car is accelerated, is given by:

\[T' = 2\pi\sqrt{\frac{l}{\left( g^2 + a^2 \right)^\frac{1}{2}}}\] 

\[ \Rightarrow 3 . 99 = 2\pi\sqrt{\frac{l}{\left( g^2 + a^2 \right)^\frac{1}{2}}}\] 

\[\text { Taking  the  ratio  of  T  to  T',   we  get: } \] \[\frac{T}{T'} = \frac{4}{3 . 99} = \frac{\left( g^2 + a^2 \right)^{1/4}}{\sqrt{g}}\]

On solving the above equation for a, we get:

\[a = \frac{g}{10}   {ms}^{- 2}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 45 | पृष्ठ २५५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Show variation of displacement, velocity, and acceleration with phase for a particle performing linear S.H.M. graphically, when it starts from the extreme position.


A platoon of soldiers marches on a road in steps according to the sound of a marching band. The band is stopped and the soldiers are ordered to break the steps while crossing a bridge. Why?


The time period of a particle in simple harmonic motion is equal to the smallest time between the particle acquiring a particular velocity \[\vec{v}\] . The value of v is


The displacement of a particle in simple harmonic motion in one time period is


A particle moves on the X-axis according to the equation x = A + B sin ωt. The motion is simple harmonic with amplitude


A wall clock uses a vertical spring-mass system to measure the time. Each time the mass reaches an extreme position, the clock advances by a second. The clock gives correct time at the equator. If the clock is taken to the poles it will


Select the correct statements.
(a) A simple harmonic motion is necessarily periodic.
(b) A simple harmonic motion is necessarily oscillatory.
(c) An oscillatory motion is necessarily periodic.
(d) A periodic motion is necessarily oscillatory.


An object is released from rest. The time it takes to fall through a distance h and the speed of the object as it falls through this distance are measured with a pendulum clock. The entire apparatus is taken on the moon and the experiment is repeated
(a) the measured times are same
(b) the measured speeds are same
(c) the actual times in the fall are equal
(d) the actual speeds are equal


Which of the following will change the time period as they are taken to moon?
(a) A simple pendulum
(b) A physical pendulum
(c) A torsional pendulum
(d) A spring-mass system


The angle made by the string of a simple pendulum with the vertical depends on time as \[\theta = \frac{\pi}{90}  \sin  \left[ \left( \pi  s^{- 1} \right)t \right]\] .Find the length of the pendulum if g = π2 m2.


A small block oscillates back and forth on a smooth concave surface of radius R ib Figure . Find the time period of small oscillation.


A small block oscillates back and forth on a smooth concave surface of radius R in Figure. Find the time period of small oscillation.


A simple pendulum of length 40 cm is taken inside a deep mine. Assume for the time being that the mine is 1600 km deep. Calculate the time period of the pendulum there. Radius of the earth = 6400 km.


A simple pendulum is suspended from the roof of a school bus which moves in a horizontal direction with an acceleration a, then the time period is


A simple pendulum has a time period T1. When its point of suspension is moved vertically upwards according to as y = kt2, where y is the vertical distance covered and k = 1 ms−2, its time period becomes T2. Then, T `"T"_1^2/"T"_2^2` is (g = 10 ms−2)


Describe Simple Harmonic Motion as a projection of uniform circular motion.


Consider the Earth as a homogeneous sphere of radius R and a straight hole is bored in it through its centre. Show that a particle dropped into the hole will execute a simple harmonic motion such that its time period is

T = `2π sqrt("R"/"g")`


A simple harmonic motion is given by, x = 2.4 sin ( 4πt). If distances are expressed in cm and time in seconds, the amplitude and frequency of S.H.M. are respectively, 


The displacement of a particle is represented by the equation `y = 3 cos (pi/4 - 2ωt)`. The motion of the particle is ______.


The velocities of a particle in SHM at positions x1 and x2 are v1 and v2 respectively, its time period will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×